
The wisdom of Crowds:
attacks and optimal constructions

George Danezis1, Claudia Diaz2, Emilia Käsper2, and Carmela Troncoso2

1 Microsoft Research Cambridge
gdane@microsoft.com

2 K.U. Leuven/IBBT, ESAT/SCD-COSIC
firstname.lastname@esat.kuleuven.be

Abstract. We present a traffic analysis of the ADU anonymity scheme
presented at ESORICS 2008, and the related RADU scheme. We show
that optimal attacks are able to de-anonymize messages more effectively
than believed before. Our analysis applies to single messages as well as
long term observations using multiple messages. The search of a “bet-
ter” scheme is bound to fail, since we prove that the original Crowds
anonymity system provides the best security for any given mean messag-
ing latency. Finally we present D-Crowds, a scheme that supports any
path length distribution, while leaking the least possible information,
and quantify the optimal attacks against it.

1 Introduction

Muñoz-Gea et al. [4] presented at ESORICS 2008 a variant of Crowds [5] to
anonymously route packets in a peer-to-peer network. The always–down-or-up
algorithm (ADU) they propose is similar to Crowds in that when a node re-
ceives a message, it decides probabilistically whether to forward it to its final
destination or to another node in the crowd. The difference with Crowds is in
the decision procedure. Instead of forwarding messages with a fixed probabil-
ity p̄, nodes in ADU forward messages with a probability that depends on their
position in the message path. This probability is computed using a variable u de-
cided locally by each node and forwarded to its successor in the path. The ADU
algorithm results in path lengths with smaller variance than those of Crowds.

In this work, we study the anonymity given by both algorithms and show
how an attacker who controls a fraction of the crowd can exploit the value of
the parameter u to better identify the initiator of a communication. Further we
show that, contrary to Crowds, the ADU algorithm is vulnerable to predecessor
attacks [7] performed by the destination server – because it allows the initiator
to send the message directly to the server.

We also prove that Crowds’ decision procedure provides optimal anonymity
for a given mean path length, and that changing the path length distribution
necessarily results in weaker anonymity. For the cases where the geometric path
length distribution of Crowds is not adequate we propose D-Crowds, an algo-
rithm that supports arbitrary path length distributions while leaking the least



possible amount of information. Finally, we evaluate the resistance of D-Crowds
against optimal attacks.

The rest of the paper is organized as follows. We first recall Crowds in Sect. 2.
The ADU algorithm, and a variant of it, are presented in Sect. 3. We evaluate
the performance of the three algorithms in terms of path length and anonymity
in Sect. 4. In Sect. 5 we prove the optimality of the Crowds’ decision procedure
and describe the D-Crowds algorithm. Finally we offer our conclusions in Sect. 6.

2 Crowds

Crowds [5] was proposed as a system for communicating anonymously, using a
peer-to-peer network (a crowd) to pass messages. The message-passing algorithm
for Crowds is simple: a user wishing to send a message to a destination first passes
it to a random node in the crowd. Each subsequent recipient then flips a (biased)
coin to decide whether to send the message to the destination or to pass it to
another crowd member. We say that Crowds has parameter p̄ if the probability
of sending the message to the end destination is p = 1− p̄. The average number
of hops a message travels in the crowd before reaching the final destination is
then 1 + p̄/p = 1/p.

The key feature that enables anonymity in Crowds is that upon receiving a
message from a crowd member, we do not know whether this is the initiator of the
message, or an intermediary who is just forwarding it. We can however, compute
the probability that each member in the crowd is the initiator of the message,
and quantify anonymity [2, 6] as the entropy of this probability distribution.

Crowds provides the initiator with perfect anonymity with respect to the end
destination, since the destination is equally likely to receive the message from
any crowd member. Collaborating dishonest crowd members, on the other hand,
can infer some information about the initiator. More specifically, the anonymity
of the initiator with respect to the crowd is a function of two parameters, the
fraction of dishonest nodes f and the Crowds parameter p̄.

Hence, it is natural to ask whether there exist other Crowds-like message
passing algorithms that provide better security guarantees for a given message
delivery latency. We proceed to show that the always–down–or–up algorithm
is less secure compared to Crowds, and furthermore, that the message passing
algorithm of Crowds is in fact optimal, and thus all attempts to improve upon
Crowds are bound to fail.

3 The Always–Down-or-Up Algorithm

The advantage of the always–down-or-up algorithm (ADU) [4] decision proce-
dure with respect to Crowds [5] is that it results in a smaller variance of the
path length. Hence, the length of a path does not differ substantially from the
mean length determined by the system parameters. The ADU decision proce-
dure is a mix of two algorithms: the always–down (AD) and the always–up (AU)
algorithms. In the AD scheme, the initiator n0 of a message chooses a random
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Fig. 1. Parameters for the ADU algorithm.

integer u0 in the interval [1,M ] (being M a parameter of the system.) We denote
ni the i-th node in the path, and ui the value it generates. If u0 = 1 the message
is sent to its final destination; otherwise it is forwarded to the next node, n1,
along with u0. n1 selects a new value u1, but using u0 as upper bound of the
interval. This process is repeated, with ui+1 ∈ [1, ui), until the message exits the
network. The AU algorithm operates similarly, substituting the lower bound by
the previous u at each hop (i.e., ui+1 ∈ (ui,M ].)

Already in [4], it is noted that both AD and AU reduce the variance of
the path length at the cost of anonymity, as the value u transmitted from a
node to its successor leaks information about its position in the path. The ADU
algorithm tries to alleviate this problem by choosing the mode of operation (AD
or AU) at random. For this purpose the algorithm has four integer numbers
as system parameters: M , e, LB and TB, represented in Fig. 1. In ADU, the
initiator of a request chooses a random number u between 1 and M . When this
number belongs to the intervals [1, e] or [M − e,M ], the message is sent directly
to its destination. If the message stays in the network, the initiator chooses
between AD and AU depending on u: the chosen mode is AD if u ∈ (e, LB], AU
if u ∈ [TB,M − e) and it is decided at random otherwise (u ∈ (LB, TB).)

Even though the initiator selects the mode of operation at random, the choice
is communicated to subsequent nodes on the path when forwarding the message
along with the u. Any corrupt node in the path observes the selected mode of
operation, and in that sense ADU is no better than the AU or AD algorithms,
contrary to the security analysis in [4].

An alternative algorithm, that we call “Random Always Down-or-Up” al-
gorithm (RADU,) does not forward the mode of operation, and nodes choose
independently between AD and AU. The algorithm would work as follows: the
initiator n0 chooses u0 ∈ [1,M ] and sends the message to the destination if
u0 ∈ [1, e] or u0 ∈ [M − e,M ]. If the message remains in the network, it is
forwarded to a new node n1 along with u0. Upon receiving u0, n1 decides which
mode to use: it chooses AD if u0 ∈ (e, LB], AU if u0 ∈ [TB,M−e) or at random
otherwise (u0 ∈ (LB, TB).) Once the mode is selected, the node picks u1 from
[1, u0) (respectively (u0,M ]) and restarts the process. We note that contrary
to the ADU algorithm, a node does not transmit to its successor the mode of
operation it has chosen. Thus, ni+1 cannot make inferences about its position in
the path assuming that ui has been generated according to a concrete mode of
operation.

The next sections compare ADU and RADU to Crowds in terms of path
length variance and anonymity.



Table 1. Comparison between ADU, RADU and Crowds algorithms.

(M , e, LB, TB) l var(l) p̄ varCrowds(l)

(100,21,30,70) 0.91 1.02 - -
(100,8,20,80) 1.91 2.10 0.53 1.73

ADU (100,3,20,80) 2.27 2.79 0.44 2.88
(150,2,20,130) 3.52 3.62 0.29 8.87
(350,2,20,330) 4.55 4.65 0.22 16.15

(100,21,30,70) 0.94 1.19 - -
(100,8,20,80) 2.08 3.13 0.48 2.25

RADU (100,3,20,80) 2.78 3.80 0.36 4.95
(150,2,20,130) 3.98 6.86 0.25 11.86
(350,2,20,330) 6.27 19.72 0.16 33.04

4 Evaluation

4.1 Path length variance

Muñoz-Gea et al. [4] demonstrate that the ADU algorithm leads to paths with
smaller variance than Crowds. In this section we confirm this result and compare
the variance of ADU, RADU and Crowds. We note that our results differ from
those presented by Muñoz-Gea et al. : in [4], the “minimum path” for ADU is
one hop, when the initiator sends the request directly to the end destination;
while for Crowds a path length of one corresponds to the request passing by an
intermediate node before reaching its destination – i.e., the definition of “path
length” is different for Crowds than for ADU, rendering the comparison in [4]
unfair.

We implemented simulators for the ADU and RADU algorithms and com-
puted the mean and the variance of the path length denoted, respectively, as l
and var(l). In the case of Crowds these values can be computed analytically as
the mean and variance of a geometric distribution with parameter p̄:

lCrowds = 1 +
1− p̄
p̄

=
1
p̄

varCrowds(l) =
1− p̄
p̄2

In all three algorithms, we consider that path length l corresponds to l inter-
mediate hops between initiator and destination, with l = 0 indicating the case
when the initiator sends the request directly to the destination.

In our experiments we use sets of values proposed in [4] for M , e, LB, and
TB. The results are summarized in Table 1. The fourth column expresses the
value of p̄ necessary in Crowds to obtain the same mean path length as in ADU
or RADU, respectively. The symbol ‘-’ in the first row of the table indicates that
there is no possible p̄ in Crowds that achieves a mean path length smaller than
one.

Table 1 shows how for the same parameters, the path length in RADU has
a larger mean and variance than in ADU. This is because in ADU the mode of
operation (AU or AD) is fixed, and successive nodes choose u from decreasing size



intervals; while in RADU the size of the interval may increase. To illustrate this
effect let us consider a scenario with parameters (M=100,e=8,LB=20,TB=80)
in which the initiator n0 selects u0 = 47 . As 47 /∈ [1, 8] ∪ [92, 100] the message
and u0 are forwarded to node n1. When n1 receives u0 it selects an operation
mode. Let us assume that the selected mode is AD, and u1 = 35 is chosen from
[1, 47). Thus, the message is forwarded again to node n2. This node, however,
selects AU as mode of operation and chooses u2 from the interval (35, 100]. In
this case the third node in the path is less likely to send the message to the
destination than its predecessor. If the ADU algorithm was used, u2 would be
chosen from [1, 35), and the probability of a shorter path would be higher. This
effect also explains the larger path length variance of RADU.

Although the performance of RADU in terms of variance is worse than ADU,
it is still better than Crowds (significantly better as the mean path length in-
creases.) As we explain in the next section, the penalty in performance comes in
exchange for better anonymity.

4.2 Anonymity with respect to corrupt nodes

We consider a threat model in which the attacker controls C out of the N nodes
in the network. When a corrupt node receives a message, it tries to infer whether
its predecessor is the initiator or not. We denote by Pr[ni|u, nx] the probability
that node ni is the initiator of a message given all the information available to
the attacker – i.e., the node nx from which the message was received and the
ADU/RADU routing parameter u associated with the message. This probability
can be decomposed as:

Pr[ni|u, nx] =
Pr[u|nx, ni] · Pr[nx|ni] · Pr[ni]∑
∀j Pr[u|nx, nj ] · Pr[nx|nj ] · Pr[nj ]

.

Where Pr[ni] is the a priori probability of a node ni being the initiator;
Pr[ni|nx] is the probability that node ni is the initiator of the message when
nx is the predecessor of the first corrupt node in the path (not taking into
account u); and Pr[u|nx, ni] denotes the probability that a value u is received
from predecessor nx when ni is the initiator.

We assume the adversary has no prior information on who is likely to be the
initiator, and thus Pr[nj ] = Pr[ni]∀i, j. We estimate the distribution of Pr[ni|nx]
and of Pr[u|nx, ni] experimentally. For this, we have implemented simulations of
the ADU, RADU, and Crowds routing algorithms.

For each of the algorithms, we simulate CT = 100 000 experiments and count
the number Ci of times that the predecessor nx of a corrupt node is the same node
as the initiator ni. We compute the probability that nx = ni as Pr[ni|ni] = Ci

CT
.

Similarly to Crowds, all other honest nodes are equally likely to be the initiator
with probability Pr[nx|ni] = 1−Pr[ni|ni]

N−C−1 ,∀x 6= i.
We proceed similarly to estimate Pr[u|nx, ni]: we simulate a large number

of ADU and RADU experiments and collect values of u received when nx = ni
and when nx 6= ni. Figure 2 shows the distribution of u when the initiator



and predecessor coincide (i.e., Pr[u|ni, ni]) and when they do not coincide (i.e.,
Pr[u|nx, ni].) The experiments were conducted in a network formed by N = 100
nodes of which C = 10 are corrupt (i.e., f = 0.1,) when considering ADU
and RADU with parameters (M=100,e=8,LB=20,TB=80), and Crowds with
parameter p̄ = 0.53 (for comparison with ADU) and p̄ = 0.48 (for comparison
with RADU.)

We observe that in both ADU and RADU initiators forward values of u
that are uniformly distributed between e + 1 and M − e − 1 (values of u ∈
[1, e] ∪ [M − e,M ] never appear in forwarded requests, as the node generating
that u would send the request to the end server.) In ADU, the distribution of u
when the node that relays message is other than the initiator (i.e., nx 6= ni) is
skewed towards large or small u’s depending on the chosen mode (AD or AU) –
given that, as a message is forwarded, nodes choose u from decreasing intervals.
For RADU, the distribution behaves roughly as a combination of AD and AU.
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Fig. 2. Pr[u|ni, ni] and Pr[u|nx, ni] for ADU (left) and RADU (right) with
(M=100,e=8,LB=20,TB=80).

Figure 3, left, shows Pr[ni|u, nx] for all considered algorithms. In Crowds
there is no u parameter, and thus Pr[ni|u, nx] = Pr[ni|nx] is constant in u. We
observe that, for ADU in AD mode it is not possible to have u’s larger than
TB = 80 (or AU would have been chosen,) and the same holds for AU and u’s
lower than LB = 20. Secondly, we can see in the figure how any of the operation
modes severely diminishes the uncertainty of the attacker with respect to the
initiator. For example, in AD mode large u’s indicate that the predecessor is
likely to be the initiator. This uncertainty is even non-existent if for example
u = TB − 1 and mode AD is chosen, as only the initiator could have generated
this value (subsequent nodes choose from [1, u), u < TB − 1.)

In Fig. 3, right, we show the entropy of the probability distribution Pr[ni|u, nx],
which expresses the initiator anonymity [2, 6]. As expected, ADU provides the
worst anonymity in most of the cases. RADU improves considerably this result,
but still it leaks more information than simple Crowds. It is worth noting that in
some cases (e.g., a very low u when operating in ADU-AD) anonymity is higher



for ADU than for Crowds, even though the adversary has gained knowledge from
the u. In these cases the adversary is more uncertain about the initiator because
it is probably not its predecessor – i.e., the adversary gains the knowledge that
it is probably not succeeding the initiator in the path. The fact that additional
information may increase anonymity was explained in [3].
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Fig. 3. The probability Pr[ni|u, ni] (left;) and the entropy the distribution Pr[ni|u, nx]
(right.) The ADU and RADU parameters are (M=100,e=8,LB=20,TB=80). Crowds-
ADU has parameter p̄ = 0.53 (i.e., same l̄ as ADU in the figure), and Crowds-RADU
has parameter p̄ = 0.48 (i.e., same l̄ as RADU in the figure).

4.3 Anonymity with respect to the end server

One of the adversaries considered in Crowds [5] corresponds to the end server
to which the initiator is connecting; i.e., the recipient of the communication.
As explained in Sect. 2, the initiator in Crowds first selects a crowd member
(possibly itself) uniformly at random, and forwards the request to it. When this
node receives the request, it flips a biased coin to determine whether or not to
forward the request to another node (with probability p̄) or to the end server
(with probability p = 1 − p̄.) In Crowds, any member of the crowd is equally
likely to be the initiator of a request from the point of view of the end server
(i.e., with probability 1

N ,) regardless of the identity of the exit Crowds node. For
this reason, Crowds provides maximum anonymity [2, 6] towards this adversary,
which corresponds to log2(N) for a crowd of N members.

In the ADU scheme [4] on the other hand, the initiator sends the request
directly to the end server with probability 2e

M (whenever u ≤ e or u ≥ M − e,)
and it forwards the request to a crowd member with probability 1− 2e

M . Given this
algorithm1, the initiator is more likely to be the exit node of its own request than
any other node. Let e and M be the parameters of the ADU routing algorithm,

1 Note that RADU operates in the same way.



and letN be the number of nodes in a crowd. Let Pr[nx|ni] denote the probability
that node nx (x = 1, . . . , N) is the exit node for a request made by initiator ni
(i = 1, . . . , N .) In ADU, the probability Pr[nx|ni] is higher when x = i than
when x 6= i:

Pr[nx|ni] =
{

2e
M + (1− 2e

M ) 1
N x = i

(1− 2e
M ) 1

N x 6= i
(1)

As a result, the initiator anonymity provided by ADU with respect to the
end server is lower than that provided by Crowds. Note that we assume that no
prior information is available to the adversary, and thus Pr[nj ] = Pr[ni] ∀j, i.
Therefore,

Pr[ni|nx] =
Pr[nx|ni] Pr[ni]∑N
j=1 Pr[nx|nj ] Pr[nj ]

= Pr[nx|ni]

expresses the probability that ni is the initiator of a request, given that nx sends
the request to the end server (i.e., nx is the exit node.)

Figure 4 compares the anonymity provided by ADU and Crowds against this
adversary model, and shows its variation with respect to the the crowd size N
and the ADU parameter e. We can see in the figure of the left that both Crowds
and ADU provide better anonymity when the N grows, but that for any given N
the anonymity of Crowds is substantially higher than that of ADU. For a crowd
size of 500, Crowds provides 9 bits of anonymity, while ADU provides little more
than 6 bits – this corresponds to the anonymity that Crowds provides to a crowd
smaller than 80.
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Fig. 4. Initiator anonymity for one request with respect to the end server; i.e., entropy
of the distribution Pr[ni|nx], 1 ≤ i ≤ N . Variation with respect to the crowd size N
(left) with M = 100 and e = 21; and with respect to e (right) with N = 100, M = 100

The figure on the right shows the variation with respect to e. When e grows,
the initiator sends the request directly to the server with a higher probability.
A large e parameter increases efficiency by reducing the path length, but the
penalty in anonymity is rather severe. At e = 15, the anonymity loss of ADU



with respect to Crowds is one bit, which has the same effect as cutting the crowd
size by half. When e = 50, the initiator always sends the requests directly to the
end server, and thus ADU provides no anonymity.

4.4 Multiple requests by the same initiator to the same server

If we consider multiple requests from the same initiator to the same end server
over time, the anonymity provided by the ADU algorithm further degrades with
the number of requests. This section extends the Predecessor attack [7] to eval-
uate the anonymity degradation of ADU towards the end server. The key idea
behind the Predecessor attack is that the true initiator of an anonymous request
will always appear in the path. If independent requests by the same initiator
can be linked together (e.g., someone frequently visiting the same unpopular
web page,) and the adversary has a chance of being the immediate successor of
the initiator in the anonymous path, then the adversary is able to identify the
initiator with high probability after a number of requests.

The attack in [7] examined an adversary model that consists of a subset of
corrupted nodes – a more complex case than that of the end server, since the
adversary only sees some of the requests – and provides bounds on the number
of requests beyond which anonymity degrades to unacceptable levels. The end
server on the other hand, is always on the path of the request (at the end of
it,) and in ADU it receives the request directly from the initiator with higher
probability than a corrupt node for the sets of parameters suggested in [4].
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Fig. 5. Anonymity with respect to the end server relative to the number R of requests
with e = 21 (left); and number R of requests after which anonymity is degraded by 1,
3, and 6 bits (right). Average over ten thousand tests with M = 100, N = 100.

In a worst-case scenario, consider that node ni is the only node in a stable
crowd of N nodes that is sending requests to an end server S. Let R be the
number of requests sent by ni to S, and Φ = {φx; 1 ≤ x ≤ N} be the observed



vector of frequencies, where φx is the number of times that nx appears as the
exit node for the requests of ni – i.e.,

∑N
x=1 φx = R.

The probability Pr[Φ|ni] of observing a vector of frequencies Φ when ni is
the initiator of R requests, is given by the probability mass function of the
multinomial distribution f(n1 . . . nN ;R,Pr[n1|ni] . . .Pr[nN |ni]), with Pr[nx|ni]
computed with formula (1). Let q0 denote Pr[ni|ni], and q1 denote Pr[nx|ni, x 6=
i], and note that q0 + (N − 1)q1 = 1. The probability Pr[Φ|ni] is given by:

Pr[Φ|ni] =
R!∏N
j=1 φj !

qφi

0

N∏
k=1,k 6=i

qφk

1 =
R!∏N
j=1 φj !

qφi

0 qR−φi

1

Given an observed vector of frequencies Φ, we can compute the posterior
probability Pr[ni|Φ] applying Bayes’ theorem:

Pr[ni|Φ] =
Pr[Φ|ni] Pr[ni]∑N
j=1 Pr[Φ|nj ] Pr[nj ]

Considering that a priori Pr[ni] = Pr[nj ] ∀i, j, we obtain:

Pr[ni|Φ] =
qφi

0 qR−φi

1∑N
j=1 q

φj

0 q
R−φj

1

We have simulated the ADU algorithm and experimentally generated obser-
vation vectors Φ. Given these vectors, we compute initiator anonymity as the
entropy of the distribution Pr[ni|Φ], 1 ≤ i ≤ N . As we can see in Fig. 5, left,
the anonymity provided by ADU quickly degrades when several requests are
made – after ten requests, the end server is able to identify the initiator with
overwhelming probability – while the anonymity provided by Crowds remains
stable.2 Figure 5, right, shows the number of ADU/RADU requests after which
anonymity has decreased from its maximum by 1, 3 and 6 bits, as a function of
the parameter e.

5 Optimal decision procedures

We have seen that the ADU mechanism, as well as its RADU variant are less
secure than Crowds. In this section we prove a key result: the decision criterion
used by Crowds, that leads to a geometric distribution of path length, is in fact
optimal for passing messages anonymously through a crowd.

In order to model message passing through a crowd, we first propose D-
Crowds, a variant of Crowds that only leaks the time-to-live of a message—
the number of remaining hops in the crowd—to the attacker, while allowing
an arbitrary path length distribution D. We then argue that all crowds-based
systems can be reduced to D-Crowds without loss in security. Finally, we prove

2 In Crowds, q0 = q1 = 1
N

, thus Pr[ni|Φ] =
qR
1∑N

j=1 qR
1

= 1
N

, and initiator anonymity is

log2(N).



that D-Crowds provides optimal security when D is a geometric distribution.
More specifically, we show that any other distribution of path lengths D would
require a longer mean path length to achieve the same level of anonymity.

5.1 D-Crowds: A generic TTL-based Crowds

The original Crowds, as well as ADU, RADU and other algorithms for passing
messages through a crowd can all be captured via the following general model:
the initiator of the connection passes her message, along with its destination
and some routing information we denote by r0, to a randomly chosen node in
the crowd. The routing information may or may not be updated as the message
passes through the crowd. The nodes in the path apply some arbitrary deci-
sion procedure based on the routing information ri they have received, to decide
whether to forward the message to another node, along with some routing in-
formation ri+1. If the message is not forwarded within the crowd it is relayed to
its final destination.

In the case of Crowds, the routing information is simply the static forwarding
probability p̄; in the case of ADU/RADU, it is the dynamically updated random
value ui ∈ [1,M ] (and the direction AD or AU for ADU). We call any system
that follows this model a crowds-based system, and we eventually prove that the
original Crowds is an optimal crowds-based system with respect to anonymity
in the crowd.3

First, we note that each crowds-based routing procedure results in path
lengths that are overall distributed according to some fixed distribution D(l)
for l ≥ 0. The following key observation allows to abstract away from details of
the decision procedure, or the routing information: every crowds-based system
necessarily leaks the time-to-live of a message—the number of remaining hops in
the crowd—to the adversary. Namely, the adversary, after observing a message,
can “simulate” its trajectory by forwarding it to other corrupt nodes or simply
to itself until the message exits the crowd. Since all nodes, including corrupt
ones, must be able to decide whether to pass the message to the destination, it
is necessary to leak such information, and our traffic analysis is based on the
adversary observing a message and its time-to-live.

On the other hand, the time-to-live is also sufficient to decide whether to
forward the message or keep it in the crowd, and any other additional auxiliary
information can only decrease the security of the system. Thus, we can restrict
our security analysis to the case where the auxiliary information consists of
only the time-to-live of the message, More formally, we define D-Crowds in the
following way:

3 Strictly speaking, ADU and RADU as proposed do not fully satisfy this definition,
as they pass a small fraction of messages directly to the destination. Obviously, a
system where all messages are passed directly to the destination provides best crowd
anonymity, while being trivially insecure against the end server. In order to guarantee
security against the end server, we thus require that the initiator always passes the
message through the crowd.



Definition 1. In D-Crowds, the initiator draws a path length l0 from an ar-
bitrary distribution of paths l0 ∼ D, and explicitly forwards it as a time-to-live
value with the message to a randomly chosen node within the D-Crowds net-
work. Upon receiving a message, a node checks the TTL value li: if it is zero, it
outputs the message to its ultimate destination, if not, it forwards the message
to a random node within the crowd with a TTL value li+1 = li − 1.

When D is a geometric distribution, we refer to the system simply as Crowds.
The TTL value is both necessary and sufficient to perform the routing. There

is no need to include any other information for routing at all, since the TTL
allows nodes to make a decision on whether to forward the message or keep it
within the crowd. Nevertheless, for simplicity of analysis, we assume that the
distribution D is also public. Contrary to the original Crowds which leaks its
path length distribution via the parameter p̄, D-Crowds does not require the
initiator to publish D. However, the adversary may be able to infer information
about D from traffic patterns, so to be on the safe side, we assume the strongest
adversary that knows the whole distribution D.

5.2 The optimality of Crowds

We modelD-Crowds as having two components: a distributionD of non-negative4

integer path lengths l ≥ 0, and a probability any node is dishonest f .
Denote the probability the hth node on a path is the first dishonest node

by Pr[H = h]; H = 0 corresponds to the event that the initiator forwards the
message to a dishonest node. We note that some messages are never observed
by a dishonest participant; this corresponds to the event l < h.

In case the adversary observes a message, the traffic analysis of D-Crowds
boils down to the following question: given the distribution D and a message
with its observed time-to-live value, what is the probability that the predecessor
is the initiator of the connection?

Since a single time-to-live value is available to an adversary seeing the mes-
sage, the best possible analysis is to calculate the probability Pr[H = 0|TTL =
ttl], where TTL = ttl is the current time-to-live value observed by the adver-
sary. Since no additional routing information ri is passed along the message,
aside the TTL, no additional information can leak though the routing strat-
egy of D-Crowds, and this probability indeed captures the full traffic analysis
capabilities of the adversary.

For any fraction f of corrupt nodes, we define the advantage of the D-Crowds
adversary to be

Advf (D) = max
ttl

Pr[H = 0|TTL = ttl].

In order to say that some general D-crowds provides better security than
original Crowds, the following needs to hold: for all possible values of f (0 <
f < 1), the advantage of the adversary must be smaller for D-Crowds.
4 Each message always passes at least one node in the crowd, but as the first hop is

deterministic, we ignore it in our analysis.



A key result we prove is that: if the condition above holds, thus the security
provided by a length distribution D is better than what is provided by a geo-
metric distribution Geomp, then it must follow that the mean of distribution D
is larger, namely E(D) ≥ E(Geomp). We formalize this as the following theorem
(The detailed proof is shown in Appendix A):
Theorem A1 For an arbitrary distribution D(l) over path lengths, if for all f ,
0 < f < 1,

Advf (D) ≤ Advf (Geomp),

then

E(D) ≥ E(Geomp).

Note that we consider worst-case rather than average-case security. We argue
that it is of no use if a system is better only for some values of the observed
TTL, or for the expected TTL. First of all, providing average case guarantees is
not appropriate for a security system, since it is unknown to us what the cost
of a single compromise would be. What’s worse in the case of Crowds, messages
are not necessarily independent, and compromising one message may lead to the
deanonymization of others. Second, each sender cares about their own message,
and has no incentive to forward a message with a TTL that is a priori known
to be particularly vulnerable.

In order to prove the theorem, we express the advantage of the adversary
via the distribution D. Recall that we are interested in the probability Pr[H =
0|TTL = ttl] that the message with an observed time-to-live value ttl came from
the initiator. The probability Pr[H = h|TTL = ttl] is easy to relate, using Bayes
theorem, with the probability Pr[TTL = ttl, D = h+ ttl|H = h] that a message
travels a further ttl hops, while it has already travelled h hops. The latter can
be expressed as

Pr[TTL = ttl|H = h] =
D(ttl + h)∑

ttl≥0D(ttl + h)
=
D(ttl + h)
F (h)

, (2)

where F (h) is a cumulative value defined as F (h) =
∑
l≥hD(l).

We also need the probability Pr[H = h] that the hth node on a path is
the first dishonest node. The number of hops a message will transit until it is
observed by the adversary is distributed geometrically according to the fraction
of dishonest members of the crowd, and the desired probability can be expressed
as:

Pr[H = h] = f̄hf
∑
l≥h

D(l) = f̄hfF (h), (3)

Assuming that H, the distribution of first compromised node, and D the
distribution of lengths are independent, we can now provide the following ex-



pression:

Pr[H = h|TTL = ttl]D =
Pr[TTL = ttl|H = h] · Pr[H = h]∑
h≥0 Pr[TTL = ttl|H = h] · Pr[H = h]

=
D(h+ ttl) · f̄hfF (h)∑
h≥0D(h+ ttl) · f̄hfF (h)

(4)

In the special case of Crowds where D is a geometric distribution (D(l) =
Geomp(l) = p̄lp,) we have that:

Pr[H = h|TTL = ttl]Geomp
= (p̄f̄)h(1− p̄f̄) (5)

Note that, due to the memoryless property of the geometric distribution of paths,
the above probability distribution is independent from the time-to-live (ttl,)
and the adversary gains no additional information from observing it. In the
general case this is not true (eq. 4,) and the probability of inferring the initiator
(Pr[H = 0|TTL]) varies according to the observed time-to-live of the message.

In order for D-Crowds to provide better security than Crowds, we must thus
have

∀0 < f < 1. max
ttl

Pr[H = 0|TTL = ttl]D ≤ max
ttl

Pr[H = 0|TTL = ttl]Geomp
.

which, from eq. 4 and eq. 5, implies that,

∀0 < f < 1, ttl ≥ 0.
D(ttl)∑

h≥0D(h+ ttl)f̄h
≤ 1− p̄f̄ . (6)

Finally, we prove Theorem A1 by showing that if condition 6 holds for some
distribution D, then its mean is larger than that of the geometric distribution
with parameter p (see app. A for details).

We can conclude that for any decision procedure to be uniformly better than
Crowds (i.e., for all f and ttl), it must lead to longer paths. Conversely, for a
fixed mean path length, Crowds provides the best security. Thus, from traffic
analysis and security perspective, there is little reason to look beyond Crowds.

5.3 D-Crowds for other distributions

Recall that Crowds with exit probability p has mean path length l̄ = 1/p, vari-
ance (1−p)/p2, and deanonymization probability Pr[H = 0|TTL = ttl] = 1− p̄f̄
for any observed time-to-live in a Crowd with a fraction f corrupt nodes. We
have already shown that any D-Crowds with the same mean provides subopti-
mal anonymity guarantees. Nevertheless, we next consider different distributions
D to illustrate the trade-off between path length variance and anonymity.

In our examples, we fix the fraction of corrupt nodes to f = 0.1 and take
Crowds with probability p = 0.25, mean path length l̄ = 4, variance σ2 = 12,
and uniform deanonymization probability Pr[H = 0|TTL = ttl] = 0.325 as our
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Fig. 6. Deanonymization probabilities Pr[H = 0|TTL = ttl] for Poisson-Crowds (left)
and Gamma-Crowds (right) with fixed mean l̄ = 4.

benchmark. First, we sample path lengths from a Poisson distribution Pois(λ);
λ = 3 yields the desired mean l̄ = λ + 1 = 4. Namely, we sample path lengths
from [0,∞) and add 1 to the length, as each message has to travel at least one
hop, from the initiator to the first Crowd node.

Fig. 6 (left) plots the theoretical probability curve, as well as the results
of 1000000 simulations; vertical bars indicate the 90% confidence interval. We
see that the Poisson distribution Pois(3) turns out to be a poor choice for this
parameter set: when the adversary observes a time-to-live TTL ≥ 4, there is at
least 50% confidence that the sender of the message is indeed the initiator.

Next, we consider the discrete quantized version of the gamma-distribution.
Fig. 6 plots the deanonymization probabilities for three distributions Γ (4, 1),
Γ (2, 2) and Γ (4/3, 3) with mean l̄ = 4 and variances σ2 = 4, σ2 = 8 and
σ2 = 10.67, respectively. We observe a clear trade-off: when keeping the mean
fixed, decreased variance yields decreased anonymity guarantees. In particular,
while Γ (1.5, 2.67)-Crowds indeed provides rather good anonymity, it also has
little performance advantage over Crowds, as its variance approaches that of
Crowds.

Finally, we also simulated a TTL-based variant of the RADU(150,2,30,130)
algorithm, yielding l̄ = 3.97 and σ2 = 6.86. Fig. 7 compares RADU-Crowds
against other D-Crowds. The anonymity curve of RADU-Crowds closely follows
Γ (2.32, 1.72)-Crowds with equal variance σ2 = 6.86, once again confirming that
anonymity is a function of path length variance.

6 Conclusions

The original Crowds is one of the most simple and elegant schemes proposed to
provide anonymity, and over the years it has received significant attention from
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the anonymity community. We conclusively show for the first time that its path
lengths, and associated latency, is also optimal in providing anonymity within
its system constraints. To provide better guarantees, more robust source routing
is required to limit the adversary from learning the remaining time-to-live of
intercepted messages. This advantage would be provided though cryptography,
which would turn Crowds closer to a mix-network scheme [1].

Our analysis of the ADU and RADU schemes demonstrate practically that
proposals with different path length distributions will provide weaker guarantees.
Previous analysis of these schemes did not take into account all information
leaked, and overlooked the fact that anonymity systems have to protect against a
corrupt end server, and thus drew mistaken conclusions about their safety. Once
more it becomes clear that even small modifications to anonymity systems need
to be accompanied by thorough traffic analysis, to demonstrate their security.
We have to be very suspicious of proposals that go against the simple rule of
thumb: the less latency and variance in latency, the less anonymity a system is
likely to provide.

Furthermore, we show that the simple D-Crowds TTL based scheme, can be
adapted to accommodate any path length distribution, while leaking the minimal
amount of information. Our probabilistic model of D-Crowds, and the Bayesian
analysis to describe the probability of success of the adversary guarantees that.
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A Optimality proof for Crowds

Theorem A1 For an arbitrary distribution D(l) over path lengths, if for all f , 0 <
f < 1,

Advf (D) ≤ Advf (Geomp),

then
E(D) ≥ E(Geomp).

Proof. The fact that the advantage of the adversary for Crowds with an arbitrary
distribution D(l) is smaller than for Crowds with a specific geometric distribution



Geomp(l) = f̄hf means, from eq. 6, that:

∀ttl. (1− p̄f̄) ≥ D(ttl)∑
h≥0D(ttl + h)f̄h

. (7)

By Lemma A2 we know that the condition above implies that:

∀ttl. D(ttl) ≤ pF (ttl), (8)

where F (l) is related to the cumulative distribution of D(l), by F (l) =
∑

k≥l D(k).
We express the expectation of D(l) as a sum of cumulative distributions and use the
inequality from Lemma A2 twice to prove our theorem.

E(D(l)) =
∑
l≥0

lD(l) =
∑
l≥0

∑
k≤l

D(l) =
∑
k≥0

∑
k≤l

D(l) =
∑
k>0

F (k) =
∑
l>0

F (l)

≥
∑
l>0

D(l)

p
=

1−D(0)

p
≥ 1− p

p
= E(Geomp(l))

and therefore E(D(l)) ≥ E(Geomp(l)). QED.

Lemma A2 We show that,

∀ttl.(1− p̄f̄) ≥ D(ttl)∑
h≥0D(ttl + h)f̄h

⇒ ∀ttl.D(ttl) ≤ pF (ttl).

Proof. We start from the left hand side of the implication, and rearrange terms:

D(ttl) ≤ (1− p̄f̄)
∑
h≥0

D(h+ ttl)f̄h (9)

∑
k≥ttl

D(ttl) ≤ (1− p̄f̄)
∑
h≥0

f̄h
∑

k≥ttl

D(h+ ttl)

F (ttl) ≤ (1− p̄f̄)
∑
h≥0

f̄hF (h+ ttl)

F (ttl) ≤ (1− p̄f̄)
[
F (ttl) + F (ttl + 1)f̄ + F (ttl + 2)f̄2 + . . .

]
F (ttl) ≤ (1− p̄f̄)

[
F (ttl) + (F (ttl)−D(ttl)) f̄ +

+

(
F (ttl)−

∑
k<2

D(k + ttl)

)
f̄2 + . . .

]

F (ttl) ≤ (1− p̄f̄)

F (ttl)

∑
l≥0

f̄ l

−
∑

l≥0

∑
k<l

D(k + ttl)f̄ l

 .



We now change the indexes of the double summation, to their equivalent conditions,

F (ttl) ≤ (1− p̄f̄)

F (ttl)

∑
l≥0

f̄ l

−
∑

k≥0

∑
l≥k+1

D(k + ttl)f̄ l


F (ttl) ≤ (1− p̄f̄)

F (ttl)

∑
l≥0

f̄ l

−
∑

k≥0

D(k + ttl)f̄k+1
∑

l≥k+1

f̄ l−k−1


F (ttl) ≤ (1− p̄f̄)

 1

1− f̄
F (ttl)−

 f̄

1− f̄
∑
k≥0

D(k + ttl)f̄k


f̄(1− p̄f̄)

1− f̄
∑
k≥0

D(k + ttl)f̄k ≤
[

1− f̄ p̄
1− f̄

− 1

]
F (ttl) =

f̄ − f̄ p̄
1− f̄

F (ttl)

(1− p̄f̄)
∑
k≥0

D(k + ttl)f̄k ≤ pF (ttl).

Note that the last derivation is a bound on (1 − p̄f̄)
∑

k≥0D(k + ttl). From eq. 9 we
derive

D(ttl) ≤ (1− p̄f̄)
∑
k≥0

D(k + ttl) ≤ pF (ttl),

which concludes the proof of the lemma.


