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Abstract—Privacy-enhancing technologies often rely on anony-
mous communication systems to hide users’ identities on the
network layer. Such systems are difficult to integrate. Privacy-
friendly applications therefore rely on other tools such as the Tor
Browser to provide anonymous communication. This approach
places a burden on users: They must install and use these tools
correctly. We present Lightnion, an anonymous communication
library that can be easily integrated into web applications to
enable seamless network anonymity for its users. Lightnion uses
the existing Tor network. It consists of a Javascript library that
runs in a user’s web browser, and a proxy that facilitates the
communication between the browser and the Tor network. In
this short paper, we present Lightnion’s architecture, its threat
model, use cases, and the first performance measurements of our
research prototype.

I. INTRODUCTION

Anonymous communication networks (ACNs) are es-
sential for privacy-enhancing technologies to maintain user
anonymity. For example, messaging systems use ACNSs to hide
communication metadata from network observers. Anonymous
authentication systems use ACNs to hide the user’s network
identity from service providers.

Over the years, application have integrated privacy-
enhancing technologies and cryptographic solutions to provide
seamless security for users. Messaging applications such as
Signal and Whatsapp use strong cryptography to provide end-
to-end encryption without any user involvement. Similarly,
the collaborative editing platform CryptPacﬂ integrates strong
cryptography to ensure that CryptPad servers cannot read the
documents its users edit.

Network anonymity, on the other hand, still relies on
external tools such as the Tor Browser. If users do not use
such a tool, their privacy may be affected. For example, if
users do not use an anonymous browsing tool, the CryptPad
server learns which users edit which documents (even though
the server cannot see the content). Similarly, if a secure email
client requests GPG keys from a key server before encrypting
an email, that key server learns who is communicating with
whom based on the requested keys.

Uhttps://cryptpad.fr

‘Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2019
24 February 2019, San Diego, CA, USA

ISBN 1-891562-60-6

https://dx.doi.org/10.14722/madweb.2019.23xxx

www.ndss-symposium.org

Matthieu Daumas
matthieu@daumas.me

Carmela Troncoso
SPRING lab, EPFL
carmela.troncoso@epfl.ch

Using Tor to browse the internet used to be difficult [1f], [7]],
however, with the introduction of the Tor Browser, usability
of Tor has improved a lot [4]], [6]]. The Brave browselﬂ might
make using Tor even easier. However, using Tor is not effortless
for ordinary users. They have to install software, and use it
correctly. Application providers might therefore not be willing
to ask or require users to use it.

In this paper we present Lightnion, an anonymous com-
munication library that can be seamlessly integrated into web
applications to enable them to make anonymous web requests
from the user’s browser. Lightnion requires no special actions
from users. Opening the web application in a normal browser
is sufficient.

Lightnion is not always an alternative to the Tor Browser.
Lightnion enhances a user’s anonymity when using trusted
web applications. Unlike the Tor Browser, Lightnion cannot
protect against malicious web sites. However, there are many
scenarios where the web application is not the adversary and
users require anonymity only for particular actions or against
particular third parties.

Consider the secure collaborative editing platform Crypt-
Pad. Users trust the software provided by CryptPad. At the
same time, they do not necessarily want the CryptPad server
to know which files they edit: users require anonymity for
the action of editing the file. To achieve this anonymity, the
CryptPad application can use the Lightnion library to perform
document edits via an anonymous channel. Similarly, the
secure webmail client can provide anonymity against the third-
party key server by making all requests for recipients’ GPG
keys using the Lightnion library. The key server can then no
longer relate key requests to real users.

Lightnion uses the existing Tor network to provide
anonymity for users. It consists of a small Javascript library
that trusted providers can embed in their websites. Websites
can then take make anonymous connections to untrusted
servers using the Lightnion library. To do so, the library
connects to the Tor network via an untrusted proxy, and then
sets up an anonymous connection via the Tor network to the
untrusted server.

In this work, we make the following contributions:

v We analyze the trust assumptions required for an anony-
mous communication library in the browser.

Zhttps://www.brave.com
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v" We apply this analysis to derive a minimal Lightnion
library that uses the Tor network and protocols.

v We constructed a prototype implementation of Lightnion
and analyze its performance.

v" We present use cases that can benefit from Lightnion.

II. BACKGROUND

Tor [2] is an overlay anonymity network consisting of
around 6000 volunteer Tor nodes, or onion routers. It is the
most widely used anonymous communication network. At any
point in time, millions of users use Tor[|

Users communicate anonymously with servers by routing
their traffic through three Tor nodes. This sequence of three
nodes is called a path, the nodes are called the guard, the
middle, and the exit node respectively. Each node on the path
only knows the identity of the two adjacent nodes. As a result,
none of the Tor nodes know both the user and the destination
server. Traffic between the Tor client, running on the user’s
machine, and nodes in the Tor network is onion encrypted.
Each subsequent node along the path removes one layer of
encryption, until finally the exit node removes the last layer
and forwards the traffic to the destination server.

The Tor network consists of many Tor nodes, each with
different capabilities and available bandwidth. A group of nine
Tor directory authorities periodically publish a consensus of
all the nodes in the network. Tor nodes themselves publish
descriptors describing their keys and other properties. Tor
clients use the consensus and descriptors to select paths and
to authenticate Tor nodes.

To create an anonymous connection to a destination server,
the Tor client proceeds as follows.

1)  The client retrieves the latest consensus and verifies
the signatures by the trusted directory authorities. It
also retrieves descriptors for many Tor nodes.

2)  The client uses the consensus information to compute
a path consisting of three nodes: the guard, middle
and exit nodes.

3) The client makes a TLS connection, called a link,
to the guard node. The client authenticates the guard
based on its descriptors and derives a shared key. The
guard and the client use this shared symmetric key to
encrypt subsequent traffic between them. The client
starts building a circuit.

4)  The client then requests the guard node to extend the
circuit to the middle node. The client authenticates
the middle node using information from the node’s
descriptor and derives a shared key. The client and the
middle node use this key to encrypt traffic between
them encrypt their traffic.

5) The client requests the middle node to extend the
circuit to the exit node. The client then authenticates
the exit node and derives a symmetric key as before.

6) Finally, the client requests the exit node to open a
TCP connection to the target server.

III. SYSTEM

Figure |I| shows a high-level overview of the Lightnion
architecture. Lightnion consists of two parts. The first part is a
Javascript library that runs inside the user’s browser. Websites
can use this library to make anonymous web requests via the
Tor network. To do so, the Lightnion Javascript client connects
to a Lightnion proxy, the second Lightnion component, via a
Websocket connection. The proxy relays Tor cells it receives
over the websocket connection to a corresponding TLS con-
nection that it maintains with guards in the Tor network.

The Lightnion Javascript library authenticates the nodes
on the circuit, deriving the correct encryption keys for the
symmetric encryption channel, and handles all the necessary
cryptographic operations. The proxy simply relays traffic to
the corresponding Tor nodes.

A. Parties and trust assumptions

The Lightnion Javascript library is provided by the website
that the user visits. We call this party the service provider. We
assume that the service provider is semi-trusted. In particular,
we assume that it will not intentionally try to send malicious
code to the user. This trust assumption can be weakened if
users can verify the code they receive before running it.

The web application may need to communicate anony-
mously with one or more end points. These end points are
untrusted and may try to identify the user. The goal of
Lightnion is to ensure user anonymity with respect to this end
point. If the end point and the service provider coincide, we
still assume that the service provider does not send malicious
code to the user. In the case of CryptPad, the end point is the
CryptPad server itself, whereas for the secure webmail client
the endpoint is the key server.

The Lightnion proxy facilitates communication between the
Lightnion Javascript client and the Tor network. We assume
that the proxy is available, but we do not trust it for privacy.
There can be many such proxies. Ideally, the Lightnion proxies
would be co-located with Tor nodes.

A non-collusion assumption. We assume that the Lightnion
proxy does not collude with the end point. If they collude, they
can perform a time-correlation attack to deanonimize users.
This assumption is the same as Tor’s assumption that the guard
node and the destination server do not collude.

IV. DESIGN AND ARCHITECTURE OF LIGHTNION

In this section we describe the design and architecture of
Lightnion.

A. A simple Tor client

Lightnion aims to implement an as simple as possible, but
fully functional, Tor client that can run in the user’s browser.
Unfortunately, the full Tor client is quite complex. Users use
Tor for a large variety of purposes, e.g., to browse websites,
to share files, to send email, to use instant messaging services,
or to visit hidden services (websites that are not accessible via
the normal Internet).

3https://metrics.torproject.org/userstats-relay- country.html
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High-level architecture of Lightnion. The Lightnion Javascript library runs in the user’s browser. To communicate anonymously with an untrusted end
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Interaction of Lightnion Javascript client running in the user’s browser and the Tor network via the Lightnion proxy. Note that the Lightnion proxy only

sees onion encrypted traffic, it can therefore neither read nor modify it. The Lightnion Javascript client holds the keys with which Tor traffic is onion encrypted.

Moreover, these different applications have widely different
characteristics. E-mail requires low bandwidth and can tolerate
a lot of latency, and messaging is low bandwidth and tolerates
some latency. Both require only a few TCP connections. On
the other hand, file sharing and web browsing, especially
when visiting streaming websites, require a large number
of concurrent TCP connections, some of which require high
bandwidth and low latency.

The Tor client has been optimized to work well in all of
these scenarios. It supports a large number of possibly long-
term and high-bandwidth connections, and in addition to the
normal protocols to communicate anonymously with existing
servers it also supports protocols to enable hidden services.
All these features complicate the Tor client.

We envision Lightnion for scenarios, see Section [V_TL that
do not require this complexity. They do not use hidden
services, do not make many simultaneous connections, nor do
the connections that they do make require high bandwidth or
very low latency. This observation has given us the freedom
to implement a lean Tor client that offers only essential
functionality: to setup one TCP connection that can be used
to transfer small amounts of data anonymously.

B. Circumventing browser limitations

Implementing a simple Tor client directly in the browser is
challenging. To connect to the Tor network, a Tor client opens
a TLS connection to the guard over TCP/IP. However, browser
scripts can only create HTTP and Websocket connections. Pure
TCP/IP connections are not allowedf]

4There exist some hacks such that circumvent these restrictions on some
browsers, for example using Flash plugins or Java applets. However, none
of these are portable or supported in a wide range of browsers. WebRTC is
supported by most browsers, but we prefer Websockets as they are simpler.

Instead, in this work we use a simple, untrusted Lightion
proxy that translates between a protocol that is available to the
Javascript Lightnion client, such as HTTP or Websockets, and
the TLS connection to the Tor nodes. Needing this proxy is
unfortunate. Ideally, this proxy would be unnecessary because
the Tor nodes themselves or pluggable transports they host
provide the required functionality.

Note that the TLS connections between the Lightnion
proxy and the Tor nodes terminate in the proxy. As a result,
the Javascript Lightnion client does not need to simulate a TLS
client in software.

C. Setting up a Tor circuit

In Section [l we identified six steps that a normal Tor
client must perform to set up an anonymous communication
channel via the Tor network. The Lightnion Javascript client
retrieves and validates the consensus and Tor node descriptors,
and selects a path. Then, it requests the Lightnion proxy to
open a TLS connection to the guard, the first node in the path.
See also Figure [T}

Thereafter, the Lightnion Javascript client performs a hand-
shake with the successive guard, middle and exit nodes. These
handshakes authenticates the nodes and derives symmetric
encryption keys that are then used to onion encrypt traffic
between the Lightnion Javascript client and the exit node. Note
that the handshake authenticates the connection to the guard
despite the fact that the proxy is a man in the middle for the
TLS connection.

Older Tor clients used to use a fast key handshake protocol
for the guard node because it already authenticated it on
the TLS layer. Obviously, the Lightnion client cannot use
this optimization because the TLS channel terminates in the
Lightnion proxy, not in the client itself.



n wL: Sending
traffic is
actually a bit
tricky. As we
need to format
our own
HTTP/S
requests.

// create a channel through the proxy
lln.open('proxy.example.net', 4990, function (channel)
{
// Callback interface (skip intermediate states)
if (lln.state != lln.state.success)
return

// Handle response of request
var handler = function(data) {...};

// Send HTTP GET request to api.ipify.org
tcp = lln.stream.tcp(channel,
'api.ipify.org', 80, handler)
tcp.send ('GET / HTTP/1.1\r\n' +
'Host: api.ipify.org\r\n\r\n')
}

Listing 1: Sample usage of the Lightnion browser script to
make an HTTP request to an external service. We omitted the
handling of the response for brevity.

After authenticating the three nodes, the client has estab-
lished a layered encrypted channel from the users browser, via
the proxy, to the exit node. See Figure 2] Note that the Light-
nion proxy only sees encrypted traffic. Finally, the Javascript
client requests the exit node to open a TCP connection to the
destination server.

V. EVALUATION

We created a research Lightnion prototype. We are cur-
rently working on turning this prototype into a robust and
stable implementation that can be used in a large variety of
settings. We report here on the initial research prototype and
its performance.

A. Implementation

We first implemented a minimal Tor client in Python to
identify the different components needed. We then reimple-
mented this client in two parts: the Javascript Lightnion client
and a Python Lightnion proxy. The Lightnion client uses
the Javascript libraries sjcﬁ and tweetnacl-jﬁ to perform the
cryptographic operations.

While we have working code for each of the six steps
described in Section [II} the current Lightnion Javascript library
does not integrate the code to verify Tor’s consensus and node
descriptors, nor does it pick paths itself. Instead, it relies on
the proxy to provide a path. We hope to change this soon.

The Javascript library does do all the cryptographic tasks:
authenticating Tor nodes, deriving symmetric keys, and send-
ing encrypted traffic. Moreover, it can setup anonymous con-
nections to any web server. The Javascript client offers a con-
venient interface to do so. This interface hides the complexities
of communicating via the Tor network from the developer. See
Listing |1| for an example.

All our code is open source and will be made available
before the start of the workshop[] We aim to publish a fully
integrated and performing prototype implementation.

Shttp://bitwiseshiftleft.github.io/sjcl/
Ohttps://tweetnacl.js.org/
7https://github.com/spring-epfl/lightnion

TABLE 1. EXPERIMENTAL RESULTS OF LATENCY IN MS OF SENDING
PACKAGES TO AN ECHO SERVER. WE SENT PACKAGES AT A RATE OF 250
PER SECOND. WE COMPARE THE BASELINE IMPLEMENTATION FEATURING
THE REGULAR TOR CLIENT TO THE IN BROWSER LIGHTNION JAVASCRIPT
CLIENT. WE ALSO MEASURE THE LENGTH OF THE TOTAL EXPERIMENT.

Round-trip Time Total Time
#pkts  baseline  in browser baseline in browser
50 101+18 135430 200+0 376+10
500 11977 4524462 2000+0 2493+277
2500 133494 13974835 10000+0 113534522

B. Performance

We performed a simple performance evaluation of the
current implementation of the Javascript Lightnion library in
conjunction with the Python proxy. For these tests we used a
small test Tor network constructed using chutney. This network
runs 8 Tor nodes (or onion routers, of which at least 2 guards
and 5 exit nodes). All tests were performed locally, they
therefore do not take network latency into account. Despite
using a test network, we expect the Lightnion overhead to be
similar when using the real Tor network. The cost of parsing
and verify the consensus (which we did not yet integrate, nor
measure) does increase when using the real Tor network.

First, we measured the round-trip latency of our imple-
mentation using a simple echo server. We created a simple
Javascript application running in a browser that uses Lightnion
to send packages to this echo service. We measure the time
between transmitting the package and when it returns to the
Javascript application. We compare the performance of this
setup with the baseline of a simple client sending packages
using the regular Tor client. All clients, Tor nodes and the echo
server run on the same machine. Hence, these experiments
measure computational overhead only.

We send packages of 498 bytes (so that they fit within
a single Tor cell) at a rate of 250 packages per second. We
noticed that the proxy suffers from congestion. Therefore we
compare the effect of sending packages for a longer time: 50
package in total (i.e., 200 ms), 500 packages in total (i.e. 2
sec), and 2500 packages in total (i.e., 10 sec). See Table E}

The table shows that longer connections have no signif-
icant effect on the latency for data sent using the regular
Tor client. However, whereas the Lightnion Javascript client
initially keeps pace with the regular Tor client, sending more
packages causes a significant increase in latency. We suspect
that mismanaged buffers in the Lightnion proxy are the cause
of this. We aim to improve the proxy in the future.

We also profiled our Javascript implementation. About 40%
of the time is spent encrypting and decrypting traffic, about
5% is spent performing integrity checks, about 20% is spent
on garbage collection, and about 19% is spent on converting
between different low-level Javascript data structures. We
aim to speed up the Javascript library by handling garbage
collection and type conversion better.

VI. APPLICATIONS OF LIGHTNION

We present four use cases where Lightnion can be used
to provide anonymity for specific actions or against untrusted
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third party servers.

Secure webmail. Consider a secure webmail client for
encrypted e-mail. Users trust the provider of their webmail
client. However, to find the GPG keys of e-mail recipients, the
webmail client requests the keys from an untrusted key server.
The key server then learns the user’s communication patterns
by virtue of seeing the key requests. Instead, the webmail
application can use Lightnion to make this request to the key
server anonymously to protect the user’s privacy.

Accessing medical resources. Consider doctors accessing
the results of a patient’s medical tests using a trusted online
platform. To provide extra information about the results, the
trusted platform refers to untrusted external websites. When
a doctor visits these external sites, these sites might learn
which doctors have patients suffering from certain diseases by
relating accessed resources to the doctor’s network identity.
The trusted platform can instead use Lightnion to retrieve
the extra information without the untrusted external websites
learning which doctor makes the request, thereby protecting
both the doctor’s and patient’s privacy.

Privacy-preserving collaborative editing. Consider a
privacy-preserving collaborative editing service such as Crypt-
Pad. This software uses cryptography to ensure that the plat-
form does not know the content of the documents. Users
trust or verify the software provided by the editing platform.
However, the editing platform learn who edits which sensitive
files based on incoming requests from the user’s browser. Users
may trusts the software provided by the editing platform, but
do necessarily trust the provider to know which files they edit.
To increase the user’s privacy, the CryptPad application can
make edit requests anonymously via Lightnion. As a result,
the CryptPad server no longer learns who edits which files.

Anonymous questionnaire website. Consider an online
questionnaire dealing with sensitive personal questions. To en-
sure the privacy of participants and to comply with regulations
such as the GDPR, the questionnaire platform does not want to
be able to link the answers to individual users. This linking can
occur in two ways: (1) via data submitted back to the server,
and (2) via information implicitly sent at the network layer
as users submit answers. The platform can easily ensure that
no explicit identifiers are submitted together with the answers.
However, the network layer identifiers remain. To remove these
identifiers, the questionnaire platform can submit the results
anonymously via Lightnion. In this way, the questionnaire
platform ensures that it cannot link answers to individual users.

A. Why not just use a proxy?

In all these scenarios users interact with both trusted
platforms and untrusted end points. One way to ensure that
users can anonymously access the untrusted server seems
to be letting the service provider operate a centralized and
trusted proxy server. This proxy server proxies the communi-
cation between the user and the untrusted end points, thereby
anonymizing users with respect to the untrusted end points.

Using Lightnion instead of a trusted proxy has many
benefits. One, Lightnion can be used in scenarios where a
trusted proxy cannot. Consider the last two scenarios. There,
the untrusted end point and the trusted proxy would coincide,

violating the trust assumptions, and resulting in no anonymity
for users. Two, operating a trusted proxy requires infrastructure
and expertise, Lightnion would provide a decentralized generic
solution instead of a custom centralized one. Three, when
using Lightnion, users can reduce their trust assumptions in the
service provider. Instead of fully trusting the proxy operated
by the service provider, users have the option to verify the
service provider’s code.

VII. RELATED WORK

Snowflake [5] aims to solve a different problem than
Lightnion. Snowflake is a censorship circumvention system
and is a successor to Flashproxy [3]]. Snowflake assumes
that censors will not block WebRTC connections as they are
also used for direct voice and video communication between
clients. To leverage this, Snowflake asks volunteers to run
an in-browser Javascript proxy, the Snowflake, that bridges
WebRTC connections from censored users to the Tor network.
Censored users, however, still use the Tor Browser (or a normal
Tor client) to connect to the Snowflake proxy.

The nOdG—TO]ﬁ project shares Lightnion’s goal to run a
Tor client in a user’s browser. It is used in demo applications
iAnonynp’| an in-Browser alternative to the Tor browser, and
Peersm'’| for peer to peer file sharing. Just like Lightnion,
these projects use a proxy to translate between WebSockets
and the Tor protocol. However, these projects seem stale (the
open source code was last updated 6 years ago, the closed
source library was last updated 4 years ago), and do not have
a clear trust model. It is unclear if they are still operational (the
Peersm demo did not work, and the iAnonym does not seem
to have a public demo). Lightnion, instead, aims to provide
well-documented open source code with a clear trust model
that targets specific applications where a small in-browser Tor
client for anonymous requests makes sense.

VIII. CONCLUSIONS AND FUTURE WORK

We presented Lightnion, a system to enable seamless
anonyous communication from a user’s browser. The use of
Lightnion is invisible to users and requires no active involve-
ment from them. We created an initial research prototype that
confirms that Lightnion’s approach of operating a small Tor
client is viable and seems to perform well enough for many
scenarios.

We aim to turn the research prototype into a well-
performing, robust piece of software that can be used in a
number of scenarios. We furthermore hope to convert parts
of the Lightnion proxy into a pluggable transport that can be
operated by existing Tor nodes, allowing any web application
to use Lightnion.
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