
PIR-Tor: Scalable Anonymous Communication
Using Private Information Retrieval ∗

Prateek Mittal1 Femi Olumofin2 Carmela Troncoso3 Nikita Borisov1 Ian Goldberg2

1University of Illinois at Urbana-Champaign
1308 West Main Street
Urbana, IL, USA
{mittal2,nikita}@illinois.edu

2University of Waterloo
200 University Ave W
Waterloo, ON, Canada
{fgolumof,iang}@cs.uwaterloo.ca

3K.U.Leuven/IBBT
Kasteelpark Arenberg 10
3001 Leuven Belgium
carmela.troncoso@esat.kuleuven.be

Abstract

Existing anonymous communication systems like Tor do
not scale well as they require all users to maintain up-to-
date information about all available Tor relays in the sys-
tem. Current proposals for scaling anonymous commu-
nication advocate a peer-to-peer (P2P) approach. While
the P2P paradigm scales to millions of nodes, it pro-
vides new opportunities to compromise anonymity. In
this paper, we step away from the P2P paradigm and ad-
vocate a client-server approach to scalable anonymity.
We propose PIR-Tor, an architecture for the Tor net-
work in which users obtain information about only a few
onion routers using private information retrieval tech-
niques. Obtaining information about only a few onion
routers is the key to the scalability of our approach, while
the use of private retrieval information techniques helps
preserve client anonymity. The security of our architec-
ture depends on the security of PIR schemes which are
well understood and relatively easy to analyze, as op-
posed to peer-to-peer designs that require analyzing ex-
tremely complex and dynamic systems. In particular, we
demonstrate that reasonable parameters of our architec-
ture provide equivalent security to that of the Tor net-
work. Moreover, our experimental results show that the
overhead of PIR-Tor is manageable even when the Tor
network scales by two orders of magnitude.

1 Introduction

As more of our daily activities shift online, the issue of
user privacy comes to the forefront. Anonymous com-
munication is a privacy enhancing technology that en-
ables a user to communicate with a recipient without re-
vealing her identity (IP address) to the recipient or a third
party (for example, Internet routers). Tor [10] is a de-
ployed network for anonymous communication, which

∗An extended version of this paper is available [26].

consists of about 2 000 relays and currently serves hun-
dreds of thousands of users a day [45]. Tor is widely used
by whistleblowers, journalists, businesses, law enforce-
ment and government organizations, and regular citizens
concerned about their privacy [46].

Tor requires each user to maintain up-to-date infor-
mation about all available relays in the network (global
view). As the number of relays and clients increases,
the cost of maintaining this global view becomes pro-
hibitively expensive. In fact, McLachlan et al. [22]
showed that in the near future the Tor network could be
spending more bandwidth for maintaining a global view
of the system than for anonymous communication itself.
Existing approaches to improving Tor’s scalability ad-
vocate a peer-to-peer approach. While the peer-to-peer
paradigm scales to millions of relays, it also provides
new opportunities for attack. The complexity of the de-
signs makes it difficult for the authors to provide rigorous
proofs of security. The result is that the security commu-
nity has been very successful at breaking the state-of-art
peer-to-peer anonymity designs [4, 6, 7, 23, 47, 48].

In this paper, we step away from the peer-to-peer
paradigm and propose PIR-Tor, a scalable client-server
approach to anonymous communication. The key obser-
vation motivating our architecture is that clients require
information about only a few relays (3 in the current
Tor network) to build a circuit for anonymous commu-
nication. Currently, clients download the entire database
of relays to protect their anonymity from compromised
directory servers. In our proposal, on the other hand,
clients use private information retrieval (PIR) techniques
to download information about only a few relays. PIR
prevents untrusted directory servers from learning any
information about the clients’ choices of relays, and thus
mitigates route fingerprinting attacks [6, 7].

We consider two architectures for PIR-Tor, based on
the use of computational PIR and information-theoretic
PIR, and evaluate their performance and security. We
find that for the creation of a single circuit, the archi-

tecture based on computational PIR provides an order
of magnitude improvement over a full download of all
descriptors, while the information-theoretic architecture
provides two orders of magnitude improvement over a
full download. However, in the scenario where clients
wish to build multiple circuits, several PIR queries must
be performed and the communication overhead of the
computational PIR architecture quickly approaches that
of a full download. In this case, we propose to perform
only a few PIR queries and reuse their results for cre-
ating multiple circuits, and discuss the security implica-
tions of the same. On the other hand, for the information-
theoretic architecture, we find that even with multiple cir-
cuits, the communication overhead is at least an order of
magnitude smaller than a full download. It is therefore
feasible for clients to perform a PIR query for each de-
sired circuit. In particular, we show that, subject to cer-
tain constraints, this results in security equivalent to the
current Tor network. With our improvements, the Tor
network can easily sustain a 10-fold increase in both re-
lays and clients. PIR-Tor also enables a scenario where
all clients convert to middle-only relays, improving the
security and the performance of the Tor network [9].

The remainder of this paper is organized as follows.
We discuss related work in Section 2. We present a brief
overview of Tor and private information retrieval in Sec-
tion 3. In Section 4, we give an overview of our system
architecture, and present the full protocol in Section 5.
We discuss the traffic analysis implications of our archi-
tecture in Section 6. Sections 7 and 8 contain our perfor-
mance evaluation for the computational and information-
theoretic PIR proposals respectively. We discuss the
ramifications of our design in Section 9, and finally con-
clude in Section 10.

2 Related Work

In contrast to our client-server approach, prior work
mostly advocates a peer-to-peer approach for scalable
anonymous communication. We can categorize existing
work on peer-to-peer anonymity into architectures that
are based on random walks on unstructured or structured
topologies, and architectures that use a lookup operation
in a distributed hash table.

Besides these peer-to-peer approaches Mittal et
al. [25] briefly considered the idea of using PIR queries
to scale anonymous communication. However, their de-
scription was not complete, and their evaluation was very
preliminary. In this paper, we build upon their work and
present a complete system architecture based on PIR.
In contrast to prior work, we also consider the use of
information-theoretic PIR, and show that it outperforms
computational PIR based Tor architecture in many scal-
ing scenarios. We also provide an analysis of the im-

plications of clients not having the global system view,
and show that reasonable parameters of PIR-Tor provide
equivalent security to Tor.

2.1 Distributed hash table based architec-
tures

Distributed hash tables (DHTs), also known as struc-
tured peer-to-peer topologies, assign neighbor relation-
ships using a pseudorandom but deterministic mathemat-
ical formula based on IP addresses or public keys of
nodes.

Salsa [29] is built on top of a DHT, and uses a spe-
cially designed secure lookup operation to select random
relays in the network. The secure lookups use redundant
checks to mitigate attacks that try to bias the result of the
lookup. However, Mittal and Borisov [23] showed that
Salsa is vulnerable to information leak attacks: as the at-
tackers can observe a large fraction of the lookups in the
system, a node’s selection of relays is no longer anony-
mous and this observation can be used to compromise
user anonymity [6,7]. Salsa is also vulnerable to a selec-
tive denial-of-service attack, where nodes break circuits
that they cannot compromise [4, 47].

Panchenko et al. proposed NISAN [35] in which
information-leak attacks are mitigated by a secure iter-
ative lookup operation with built-in anonymity. The se-
cure lookup operation uses redundancy to mitigate active
attacks, but hides the identity of the lookup destination
from the intermediate nodes by downloading the entire
routing table of the intermediate nodes and processing
the lookup operation locally. However, Wang et al. [48]
were able to drastically reduce the lookup anonymity by
taking into account the structure of the topology and the
deterministic nature of the paths traversed by the lookup
mechanism.

Torsk, introduced by McLachlan et al. [22], uses secret
buddy nodes to mitigate information leak attacks. Instead
of performing a lookup operation themselves, nodes can
instruct their secret buddy nodes to perform the lookup
on their behalf. Thus, even if the lookup process is not
anonymous, the adversary will not be able to link the
node with the lookup destination (since the relationship
between a node and its buddy is a secret). However, the
aforementioned work of Wang et al. [48] also showed
some vulnerabilities in the mechanism for obtaining se-
cret buddy nodes.

2.2 Random walk based architectures
In MorphMix [38] the scalability problem in Tor is al-
leviated by organizing relays in an unstructured peer-to-
peer overlay, where each relay has knowledge of only a
few other relays in the system. For building circuits, an

initiator performs a random walk by first selecting a ran-
dom neighbor and building an onion routing circuit to
it. The initiator can then query the neighbor for its list
of neighbors, select a random peer, and then extend the
onion routing circuit to it. This process can be iterated a
number of times to build a random walk of any desired
length.

MorphMix is vulnerable to a route capture attack,
where a malicious relay returns a list of only other col-
luding nodes during a random walk. This attack ensures
that once the random walk hits a compromised relay, all
subsequent relays in the random walk are also compro-
mised. In particular, when the first relay in the random
walk is compromised, user anonymity is trivially broken.
While MorphMix proposed a collusion detection mech-
anism to mitigate the route capture attack, it was later
shown that the mechanism can be broken by a collud-
ing set of attackers that models the internal state of each
relay [44].

ShadowWalker [24] also uses a random walk to locate
relays, but instead of organizing relays into an unstruc-
tured overlay, it uses a distributed hash table. Neighbor
relationships in the DHT are deterministic, and can be
verified by the initiator to mitigate route capture attacks.
To prevent any information leakage during verification of
neighbor information, some redundancy is incorporated
into the topology itself. Recently, Schuchard et al. [39]
analyzed an attack on ShadowWalker, and also studied a
fix for the attack.

We note that all of the peer-to-peer designs provide
only heuristic security, and the security community has
been very successful at breaking the state-of-art designs.
This is partly because of the complexity of the designs,
which make it difficult for the system designers to rigor-
ously analyze the security of the system. We also note
that all secure peer-to-peer systems are built on top of
assumptions that are difficult to realize in practice. For
example, security of these designs depends on the frac-
tion of compromised relays in the system being less than
20–25%. Modern botnets can comprise of tens to hun-
dreds of thousands of bots [19], which is likely sufficient
to overwhelm the security of the system. In PIR-Tor, we
target a design where it is feasible to rigorously argue
about the anonymity properties of the design, and where
the ability to obtain random relays both securely and
anonymously does not depend on the fraction of com-
promised relays in the system.

3 Background

3.1 Tor
Tor [10] is a deployed network for low-latency anony-
mous communication. Tor serves hundreds of thousands

of clients, and carries terabytes of traffic per day [45].
The network is comprised of approximately 2 000 relays
as of February 2011 [20]. Tor clients first download a
complete list of relays (called the network consensus)
from directory servers, and then further download de-
tailed information about each of the relays (called the
relay descriptors). The network consensus is signed by
trusted directory authorities to prevent directory servers
from manipulating its contents. Clients select three re-
lays to build circuits for anonymous communication. A
fresh network consensus must be downloaded at least as
often as every 3 hours, while fresh relay descriptors are
downloaded every 18 hours.

To protect against certain long-term attacks [33] on
anonymous communication, each client, when it starts
Tor for the first time, selects a set of three guard re-
lays from among fast and stable nodes. As long as the
selected guards remain available, new ones will not be
chosen. The first relay in any circuit constructed by the
client will be one of its three guards. Also, clients select
the final relay from the subset of the Tor relays which
allow traffic to exit to the Internet, called the exit relays;
each exit relay has an exit policy, which lists the ports
to which the relay is willing to forward traffic, and the
client’s choice of exit relay must of course be compatible
with its intended use of the circuit. Any relay is eligible
to be the middle relay of a circuit. Clients can multiplex
multiple TCP connections (called streams) over a single
Tor circuit; the lifetime of a circuit is generally 10 min-
utes. Finally, Tor relays have heterogeneous bandwidths,
and subject to the above constraints, clients select a Tor
relay with a probability that is proportional to a relay’s
bandwidth.1

3.2 PIR
Private information retrieval [5] provides a means of re-
trieving a block of data out of a database of r blocks,
without the database server learning any information
about which block was retrieved. A trivial solution to
the PIR problem — the one used currently by Tor —
is to transfer the entire database from the server to the
client, and then retrieve the block of interest from the
downloaded database. Although the trivial solution of-
fers perfect privacy protection, the communication over-
head is impractical for large databases or for a system
like Tor where minimizing bandwidth usage remains a
high priority. PIR schemes are therefore designed to pro-
vide sublinear communication complexity.

We can classify PIR schemes in terms of their pri-
vacy guarantees and the number of servers required for

1Since not all relays are eligible for every position, some additional
load-balancing logic is used to underweight relays eligible to be guards
or exits when choosing middle relays.

the protection they provide. Information-theoretic PIR
schemes (ITPIR) are multi-server schemes that guaran-
tee query privacy irrespective of the computational capa-
bilities of the servers answering the user’s query. ITPIR
schemes assume the database servers are not colluding
to determine the user’s query. Single-server computa-
tional PIR schemes (CPIR), on the other hand, assume
a computationally limited database server that is unable
to break a hard computational problem, such as the dif-
ficulty of factoring large integers. The noncollusion re-
quirement is then removed, at some cost to efficiency.

We choose the single-server lattice-based scheme by
Aguilar-Melchor et al. [1] as an example of CPIR, and
the multi-server scheme by Goldberg [12] as an exam-
ple of ITPIR. The CPIR scheme is the best-performing
single-server scheme [32], and both are available as
open-source libraries.

4 System Overview

4.1 Design goals

1. Scalable architecture: We target a design for anony-
mous communication that is able to scale the number of
relays and clients in the network. We note that a design
that is able to accommodate more relays in the network
not only improves the network performance, but also im-
proves user anonymity [9].
2. Security: Prior work on scalable anonymous com-

munication only provides heuristic security guarantees,
and the security community has been very successful at
breaking the state-of-art designs. We target a design that
leverages well-understood security mechanisms making
it relatively easy to analyze the security of the system.
Secondly, we aim to achieve similar security properties
as in the existing Tor network. We show that reasonable
parameters of PIR-Tor are able to provide equivalent se-
curity to the Tor network.
3. Efficient circuit creation: Architectures that im-

pose additional latency during circuit creation may not
be practical, since the user needs to wait for the circuit
creation to finish before starting anonymous communi-
cation.
4. Minimal changes: We target a design that requires

minimal changes to the existing Tor architecture. For in-
stance, transitioning Tor to a peer-to-peer system will re-
quire a significant engineering effort. Our design lever-
ages existing implementations and requires changes to
only the directory functionality and relay selection mech-
anism in Tor and can be incrementally deployed by both
clients and relays.
5. Preserving Tor constraints: The Tor network im-

poses several constraints on the selection of relays during

circuit construction. For example, the first relay must be
one of the user’s guards, the final relay must allow traffic
to exit to a user’s desired port, and the relays must be se-
lected in proportion to their bandwidth for load balancing
the network. Some prior work like ShadowWalker [24]
and Salsa [29] did not focus on these issues.

Limitations: Our architecture achieves its scalabil-
ity properties by trading off bandwidth for computation;
thus directory servers will be required to spend additional
computational resources. In our performance evaluation
we show that the computational resources required to
support our architecture are feasible.

4.2 System architecture

Our key insight when designing PIR-Tor is that the
client-server model in Tor can be preserved while si-
multaneously improving its scalability by having users
download the descriptors of only a few relays in the
system, as opposed to downloading the global view.
However, naively doing so can enable malicious direc-
tory servers to launch fingerprinting attacks against the
users, thereby compromising anonymity. We propose
that users leverage private information retrieval proto-
cols to download the identities of a few relays, thereby
protecting their privacy against compromised directory
servers. Note that a client does not need to use a PIR
protocol to select its guard relays; a full download of the
network consensus and relay descriptors suffices, since
guard relay selection is a one-time operation that does
not affect the scalability of the protocol.

Recall that private information retrieval has two fla-
vors: computational PIR and information-theoretic PIR.
While both CPIR and ITPIR can be used by clients, the
underlying techniques have different threat models, re-
sulting in slightly different architectures, as depicted in
Figure 1.

Computational PIR at directory servers: Computa-
tional PIR can guarantee user privacy even when there
is a single untrusted database. In this scenario, we pro-
pose that as in the current Tor architecture, any relay can
act as a directory server. The directory servers maintain
a global view of the system, and act as a PIR database.
Clients can then use a CPIR protocol to query the direc-
tory servers and obtain the identities of random relays in
the system.

Information-theoretic PIR at directory authorities
(rejected): Information-theoretic PIR can guarantee
user privacy only when a threshold number of databases
do not collude. Since directory servers in the current
Tor network are untrusted, they cannot be used as PIR
databases. However, Tor has eight directory authorities
sign the global system view (the network consensus).

Client

Directory/PIR
server

(any node)

5. 2 PIR Queries (1 middle, 1 exit)

2. Initial connect

Trusted
directory

authorities

3. Signed meta-information

4. Load balanced
index selection

6. PIR Response

• Middle database sorted by relay bandwidth.
• Exit database first grouped by exit policy, each group sorted by relay

bandwidth.

1. Download
PIR database

(a) CPIR-based architecture

Client

Directory/PIR
servers

(3 guard nodes)

5. 1 middle, 1 PIR Query (1 exit)

2. Initial connect

Trusted
directory

authorities

• Middle database sorted by relay bandwidth.
• Exit database first grouped by exit policy, each group sorted by relay

bandwidth.

3. Signed meta-information

4. Load balanced
index selection

6. PIR Response

1. Download
PIR database

(b) ITPIR-based architecture

Figure 1: System Architecture: For the CPIR architecture, an arbitrary set of relays are selected as the directory
servers (PIR servers) that maintain a current copy of the PIR database, while for the ITPIR architecture, guard relays
are the directory servers. Directory servers download the PIR database from trusted directory authorities. To perform
a PIR query, clients first obtain meta-information about the PIR database from the directory servers, and then use the
meta-information to select the index of the PIR block to query, taking into consideration the bandwidths and the exit
policies of the relays. Relay information from the results of the PIR queries can be used to build circuits for anonymous
communication. Note that in the ITPIR architecture, clients use PIR to query for only the exit relays.

Since Tor already trusts that the majority of directory
authorities are honest, one potential solution could have
been to use the directory authorities as PIR databases.
However, we reject this approach since the directory au-
thorities would become performance bottlenecks in the
system, in addition to targets for DDoS attacks.

Information-theoretic PIR at guard relays: Instead,
we note that Tor already places significant trust in guard
nodes. If all of a client’s guard relays are compromised,
then they can perform end-to-end timing analysis [2] in
conjunction with selective denial of service attacks [4] to
break user anonymity in the current Tor network. Thus
we consider using a client’s three guard nodes as the
servers for ITPIR. Unless all three guard nodes are com-
promised they cannot learn the identities of the relays
downloaded by the clients. Even if all three guard relays
are compromised, they cannot actively manipulate ele-
ments in the PIR database since they are signed by the
directory authorities; they can only learn which exit re-
lay descriptors were downloaded by the clients. (In Tor,
guards always know the identities of the middle nodes in
circuits through them.) If the exit relay in a circuit is hon-
est, then guard relays cannot break user anonymity. On
the other hand, if the exit relay used is malicious, then
user anonymity is broken [6], but in this scenario, the ad-
versary could have performed end-to-end timing analysis
anyway [2] (in the current Tor network).

5 PIR-Tor Protocol Details

5.1 Database organization and formatting

We first note that Tor relays are selected based on some
constraints. For instance, the first relay must be an en-
try guard, and the last relay must be an exit relay. We
propose to organize the list of relays into three separate
databases, corresponding to guard nodes, middle nodes
and exit nodes. Note that some relays function as entry
guards as well as exit relays — such relays are duplicated
in both the guard database and the exit database.

In addition to the last relay being an exit, its exit pol-
icy must satisfy the client application requirements. In
a February 2011 snapshot of the current Tor network,
there were 471 standard exits (default exit policy) and
482 non-standard exits sharing 221 policies. Had the
number of non-standard exits been small, then clients in
PIR-Tor could download all the relay descriptors for the
non-standard exits, and use PIR to select descriptors for
the standard exits. However, this is not the case. Instead,
we propose that nodes in the exit database be grouped
by their exit policies. Furthermore, in order to keep the
number of groups manageable, we propose that there be
a small set of standard exit policies that exit relays can
choose from. Our architecture can accommodate a small
set of relays with non-standard exit policies, and these
outliers can be downloaded in their entirety as above.

Tor relays have heterogeneous bandwidth capabilities,
and relays with higher capacities are selected with a

higher probability in order to load balance the network.
Bandwidth-weighted selection is straightforward given a
global view of the network. We now outline two strate-
gies to enable clients to perform weighted relay selection
without this global view. The first strategy implements
the Snader-Borisov [41, 42] criterion for relay selection,
where only the relative rank of the relays in terms of their
bandwidths is used for relay selection.2 The second strat-
egy is more similar to the current Tor algorithm, where
the entire bandwidth distribution of relays is taken into
consideration for relay selection. In both scenarios, we
first sort relays in each of the databases in order of band-
width. Clients can use the Snader-Borisov mechanism
by choosing the relay index to query with probability that
depends on the index value. For example, if the relays are
sorted in descending order of bandwidth, then clients can
select relays having a smaller index with higher probabil-
ity. To implement an algorithm similar to the current Tor
network, we propose that clients download a bandwidth
distribution synopsis from the directory servers, and use
it to make the relay selection. Finally, we note that the
exit database is treated as a special case since relays are
first grouped based on their exit policies, and within each
group, relays are further sorted by bandwidth. This en-
ables a client to select an exit relay whose exit policy
satisfies its application requirements in a load-balanced
manner.

The PIR protocols we consider are block-based: the
database is composed of a number of equal-sized blocks.
The block size must be large enough to hold at least a sin-
gle relay descriptor, but may hold more. We must also
ensure that relay descriptors do not cross block bound-
aries by padding the database. To guard against active
attacks by directory servers, each block is signed by the
directory authorities; the data signed also includes the
block number (index), the consensus timestamp and a
database identifier. To minimize overhead, we use the
threshold BLS signature scheme [3] since signatures in
that scheme are single group elements (22 bytes, for ex-
ample, for 80-bit security), regardless of the number of
directory authorities issuing signatures.

5.2 PIR Protocols and database locations
5.2.1 Computational PIR

Computational PIR protocols can guarantee privacy of
user queries even with a single untrusted relay acting as
a PIR database. Thus, we can designate an arbitrary set
of relays in the network as directory servers, and only

2The use of the Snader-Borisov criterion may have an impact on
the performance of the Tor network. Murdoch and Watson’s queueing
model [28] suggests that it will cause greater congestion at Tor relays,
whereas Snader and Borisov’s flow-level simulations [42] predict sim-
ilar or even improved network utilization.

the directory servers need to maintain a global view of
all the relays, i.e., a current copy of the network con-
sensus formatted as above. Then, instead of download-
ing the entire consensus document from the directory
server, clients connecting to these directory servers use
a computational PIR protocol to retrieve a block of their
choice, without revealing any information about which
block, to the directory server. While our architecture is
compatible with all existing CPIR protocols, we use the
lattice-based scheme proposed by Agular-Melchor and
Gaborit [1] since it is the computationally fastest scheme
available. Note that the lattice-based CPIR protocol is a
single-server protocol, and does not require any interac-
tion with other directory servers.

5.2.2 Information-Theoretic PIR

Information-theoretic PIR protocols guarantee privacy of
user queries only if a threshold number of PIR databases
do not collude. As stated above, we use a client’s three
guard relays as ITPIR directory servers. The parameters
of the protocol are set such that the guard relays do not
learn any information about the client’s block unless all
three of them collude.

5.3 Client query protocol and meta-
information exchange

To query for a middle and exit relay, a client connects
to one of its directory (PIR) servers, which responds
back with the meta-information about each of the PIR
databases, such as the number of blocks in the database,
the block size, the distribution of exit policies, and a
bandwidth distribution synopsis. Note that the meta-
information is also timestamped and signed by the di-
rectory authorities. Based on this information, clients
can construct a PIR query to select Tor relays while sat-
isfying the constraints of the user. Clients can perform
load balancing based on the Snader-Borisov mechanism
by selecting an index to query with a probability that de-
pends on the index value. For greater flexibility, clients
can perform load balancing in a manner similar to the
current Tor architecture by using the bandwidth distribu-
tion synopsis to select an index to query. The PIR queries
are performed by the clients well in advance of construct-
ing the circuit, so as not to impose extra latency during
circuit construction. Note that clients may not be able to
predict the exit policies required by circuits in advance.
To bypass this constraint, recall that the relays in the exit
database are grouped based on a small set of standard
exit policies, and clients can perform a few PIR queries
to obtain exit relays that satisfy all standard exit poli-
cies. Finally, clients can periodically download the relay

descriptors of the small set of exit relays that have non-
standard exit policies (every 3 hours).

Next, we propose an optimization that clients can per-
form while using guard relays as directory servers in the
case of information-theoretic PIR. We note that during
circuit creation, a guard relay learns the identity of the
middle relay. Thus the clients could simply skip the
PIR for the middle database, and directly query a single
guard relay for a particular block. Note that all blocks are
signed by the directory authorities, and any active attacks
by the guard relay will be detected by the client. Also
note that the fetched descriptors should only be used in
conjunction with the guard relay from which they were
obtained; otherwise, even a single compromised guard
would be able to perform fingerprinting attacks [6].

5.4 Circuit Construction
The circuit creation mechanism remains the same as in
the current Tor network. In the current Tor network,
clients construct a new circuit every 10 minutes. As we
show in Section 8, in the ITPIR scenario, the cost of all
Tor clients performing one PIR query (since the middle
relay is fetched without using PIR) every 10 minutes is
manageable. In the CPIR setting, the communication
overhead of all Tor clients performing two PIR queries
in a 10-minute interval is rather high, and we propose to
perform fewer PIR queries, and reuse descriptors in sub-
sequent time intervals. We discuss this further in Sec-
tion 7.

6 Traffic Analysis Resistance of PIR-Tor

In this section we evaluate the resistance to traffic anal-
ysis of PIR-Tor. We consider an adversary that can ob-
serve some fraction of the network and has the ability to
generate, modify, delete, or delay traffic. She can com-
promise a fraction of the relays, or introduce relays of
her own. Further, we consider that the adversary can ob-
serve clients’ requests to the PIR-Tor directory servers,
and knows that in these requests the client only learns
about a fraction of the relays in the network.

As pointed out in the past [6,7], clients’ partial knowl-
edge of the relays belonging to the anonymity network
enables route fingerprinting attacks. In these papers it is
assumed that relay discovery is a non-anonymous pro-
cess. Hence, an adversary observing the discovery pro-
cess can build a mapping between users and the relays
they know. If clients learn unique (disjoint) sets of relays,
their paths can be “fingerprinted”, and the client’s iden-
tity can be trivially recovered from this mapping. This
problem does not exist in the current Tor, where query-
ing the directories provides clients with a global view of
the network.

In PIR-Tor the threat model slightly differs from the
one in [6, 7]. Directory queries continue being identifi-
able, but PIR prevents the adversary from learning which
exact relays were retrieved from the database, avoiding
the creation of a mapping describing users’ knowledge.
Therefore, when route fingerprinting is performed the at-
tack does not result in a direct loss of anonymity. Even
if the choice of relays appearing in the fingerprint were
unique, the adversary does not have a way to link this
fingerprint to a specific client. In fact, the only way for
the attacker to link the client with the destination of her
traffic is to control the first and last relays in the path
and perform a traffic confirmation attack [37], which in
our system will happen with probability c2, where c is
the fraction of compromised bandwidth in the network
— the same probability as in the current Tor network.

Although route fingerprinting does not result in a di-
rect loss of anonymity in PIR-Tor, the information leaked
could be used by the adversary to relate connections from
the same user and construct behavioral profiles. In turn,
these profiles can lead to the re-identification of users
directly [16] or by combining them with publicly avail-
able databases [14, 30, 43]. We note that the linkabil-
ity of circuits is not a problem unique to PIR-Tor, and
that features other than partitioning the network (e.g.,
cookies [36], session timing [17], or frequently accessed
hosts [17]) can be used in the current Tor network to pro-
file users.

6.1 Impact of fingerprinting on PIR-Tor

Before diving into the analysis we note that the number
of relays (or descriptors) in each PIR block is irrelevant
for the result. Fingerprinting attacks are based on the
clients’ knowledge of relays in the network, but in PIR-
Tor clients retrieve blocks that may contain one or more
descriptors. Hence, either the client knows about all the
descriptors in a block or she does not know any of them.
Thus, from the point of view of the adversary all relays in
a block are equivalent, regardless of how many descrip-
tors are in this block; only the number of blocks matters
when computing the probabilities we use in our analysis.

We consider an adversary that controls the receiver of
the communication, and thus can observe the exit relay
chosen by the client. Additionally, she may also control
the exit relay hence also learning the middle relay in the
client’s circuit.

6.1.1 One PIR request per circuit construction

If the computation and communication cost for clients
and directory servers in dealing with PIR queries is small
(as when ITPIR is used), clients could request new de-
scriptors for each circuit construction. Regardless of

the selection algorithm used, due to the PIR properties,
the adversary cannot distinguish which block is retrieved
from the database with each query and hence she gains
no information as to which relays are known to the client.
In this setting the adversary must assume that all relays
are known to the client, and PIR-Tor fingerprinting resis-
tance is equivalent to that of the current Tor network.

Nevertheless, when CPIR is used we must expect lim-
itations both in bandwidth and computation capabilities.
Therefore, each time the client obtains a set of descrip-
tors with a CPIR query, these descriptors may have to be
reused across multiple circuit rebuilds. In the next sec-
tion we evaluate the impact of this reuse on the privacy
protection offered by PIR-Tor.

6.1.2 Reusing descriptors for circuit construction

In our analysis we assume that the attacker observes
the exit relay (respectively exit and middle relays) of a
client’s circuit. As we have already discussed, this does
not directly leak information about the client’s identity
and anonymity is preserved. However, the adversary can
still profile clients based on their network knowledge,
eventually leading to de-anonymization [14, 16, 30, 43].

The adversary can construct a behavioral profile with
all connections she observes coming from exit relays (re-
spectively exit and middle relays) that belong to the same
PIR block. If the selection algorithm is such that many
clients have knowledge of a block (recall that all relays
in the block are equivalent for the attacker) the profile
recovered by the adversary is an aggregate profile of all
these users, jeopardizing the de-anonymization of indi-
vidual clients. On the other hand, if the choice of relays
is unique to each client the profile recovered by the ad-
versary accurately reflects the behavior of an individual
user and the danger of de-anonymization grows. There-
fore, it is desirable that clients share choices such that
the adversary can only obtain aggregated profiles that
reduce her precision when re-identifying clients. Other
ways than relay selection for the attacker to link and/or
discriminate clients’ connections [17, 36] are left out of
the scope of our analysis.

In this section, we evaluate the protection against pro-
filing provided by PIR-Tor when descriptors have to be
reused across circuit constructions. We aim to answer
the question “how precisely can the adversary assign an
observed connection (exit relay, or exit and middle) to
a unique client?”. We use as a metric the fraction α of
clients that could be initiators of a connection (i.e., the
expected fraction of clients that have knowledge of the
PIR-Tor block containing the relay(s) observed by the
adversary). The larger the fraction of clients that may
know the observed relay, the better privacy users enjoy
because the adversary can only construct aggregate pro-

files. We note that even if the adversary is actually col-
lecting information from a single user, she cannot be sure
that this is the case based on the PIR-Tor relay selection
algorithm; she must assume that the profile she observes
may contain sessions from multiple users. We also note
that, based on the relay selection algorithm, the adver-
sary cannot link connections from a user routed through
different exit relays. This is because the PIR properties
prevent the attacker from learning any relation between
the descriptors retrieved by a client. Hence, the connec-
tions of one client routed through exit relays in different
PIR blocks are unlinkable and the adversary must assign
them to different profiles (that may or may not contain
information about other users).

If the adversary observes connections coming from the
exit relay e, the fraction of clients α that may know this
relay are those who retrieved from the database the block
containing e. In PIR-Tor we assume that clients retrieve
a set B of b blocks every time they query the directory
server, hence the fraction of clients that have knowledge
of the block containing e is: α = (1 − (1 − Pr[e])b),
where Pr[e] is the probability of choosing the block con-
taining e as one of the b retrieved blocks, and depends
on the algorithm used for the selection of relays. For
simplicity in our analysis we assume that there is only a
single standard exit policy.

We explained in Section 5 that for load balancing, re-
lays with higher capacities are selected with a higher
probability. We described two criteria for selecting re-
lays: a bandwidth-based criterion (BW), and the Snader-
Borisov criterion (SB). To evaluate the BW criterion ac-
cording to a realistic bandwidth distribution we captured
a snapshot of the Tor consensus directory on 9 February
2011. This directory includes 649 exit relay descriptors
after removing the slowest one-eighth of the total relays
that are not used to relay traffic at all in the current Tor
network [31]. For the evaluation of SB we computed the
probability Pr[e] according to the algorithm introduced
in [41]. Given the function fs(x) = (1−2sx)

(1−2s) a value x
is drawn uniformly at random from [0, 1), and the block
with index bNblocks × fs(x)c is selected. The inverse of
the function fs(x) is the function f−1

s (x) = (log2(1 −
(1 − 2s) · x))/s. Then, the probability of selecting a
block containing the relay e in the i-th position of the list
is Pr[e] = f−1

s (i/Nblocks)− f−1
s ((i− 1)/Nblocks). We

use s = 1, which results in a probability distribution near
to uniform, and s = 10, which results in a distribution
very skewed towards the relays offering high bandwidth.

Figure 2 shows box plots3 describing the distribution

3The line in the middle of the box represents the median of the
distribution of α. The lower and upper limits of the box correspond,
respectively, to the first (Q1) and third quartiles (Q3) of the distribution.
We also show the outliers: relays e which are chosen with values that
are “far” from the rest of the distribution (α > Q3 + 1.5(Q3 − Q1)

BW SB(1) SB(10) BW SB(1) SB(10)
0

0.05

0.1

0.15

0.2

0.25

0.3
α

(13 blocks) (148 blocks)

Figure 2: BW and SB(s) selection: evolution of α with
the database size.

of α for the different selection algorithms. We choose
two database sizes to show the performance of the al-
gorithms when the network scales. A small database
that contains 649 exit relays (as in the current Tor net-
work) divided in 13 blocks for optimal performance of
the CPIR algorithm (note that if ITPIR is used there is
no need to reuse relays across circuit rebuilds).4 The sec-
ond database contains 1M relays, divided in 148 blocks.
In the BW case, we construct the distribution of band-
width amongst the relays by concatenating copies of the
original list downloaded from the Tor network. We refer
the reader to the extended version of this paper [26] for
a more detailed analysis of the evolution of α when the
network scales.

The median of the BW distribution is α = 0.016; that
is, 1600 clients have knowledge of each relay when the
network is used by 100 000 users.5 When the network
grows, the median of α diminishes to 0.0012. As there
are more blocks in the database clients have more choice,
and so they share knowledge of fewer relays.

We can see that SB(1) offers the best protection (a
larger fraction of clients know a relay), but as clients’
choice of relays, and hence blocks, is nearly uniform it
does not load balance the network. The means of SB(1)
and SB(10) are similar; however, SB(10) has a greater
variance. SB(10) yields medians of α = 0.022 and
α = 0.0019 when there are 13 and 148 blocks in the

or α < Q1− 1.5(Q3−Q1)).
We have cut the figure’s y axis for better visibility. The figure does
not show two outliers for the 13-block BW and SB(10) plots that have
α = 0.38 and α = 0.63, respectively.

4For a database of r 2100-byte descriptors and recursion parameter
(see Section 7) R = 2, the optimal number of blocks is approximately
1.50 · 3

√
r.

5The Tor project reports an estimate of Tor users between 100 000
and 250 000 in January 2011 (http://metrics.torproject.
org/users.html). We take 100 000 to represent the worst-case
scenario for the clients.

database, respectively. In the latter case, the adversary
still captures aggregated profiles of 190 clients for the
median relay.

If besides the receiver of the communication the ad-
versary also controls the exit relay, then she can observe
the middle and exit relays of the client’s path. Let us call
the observed exit relay e, and the observed middle relay
m. The fraction of clients knowing the blocks contain-
ing these relays is: Pr[e,m ∈ B] = (1− (1− Pr[e])b) ·
(1−(1−Pr[m])b), where Pr[e] and Pr[m] depend on the
path selection algorithm. Hence, Pr[e,m ∈ B] is orders
of magnitude smaller than Pr[e ∈ B] increasing the ac-
curacy of profiling, as it becomes less likely that clients
share knowledge of both exit and middle relays.

We note that the results above represent the case in
which clients only retrieve b = 1 blocks per PIR query.
If the clients retrieve more blocks they can significantly
improve their privacy protection (α grows approximately
linearly with b). Moreover, if clients retrieve b > 1
blocks each time, they divide by b the number of cir-
cuits routed by each of the known exit relays. Finally,
we would like to stress that client’s profiles are only link-
able until they refresh their network knowledge. If, as in
the current Tor network, this happens each 3 hours and
circuits are rebuilt every 10 minutes, the adversary can
link data from only 18/b circuits. We have shown in this
section that, even though it does not break anonymity,
reusing descriptors breaks the unlinkability of circuits.
In order to prevent the attack we have discussed, clients
should request new blocks from the directory server (or
from the guard nodes if ITPIR is used) often or in groups
of several blocks such that the reuse of descriptors is min-
imized.

7 Performance Evaluation of Computa-
tional PIR

We now present experimental results for the CPIR archi-
tecture. We chose standard security parameters for the
CPIR scheme [1] (`0 = 19 and N = 50), and computed
the client/server computation times and communication
costs by running an implementation of this scheme [15].
The hardware was a dual Intel Xeon E5420 2.50 GHz
quad-core machine running Ubuntu Linux 10.04.1. Note
that for our evaluation, we used only a single core, which
is equivalent to a standard desktop machine today.

We set the descriptor size to be 2 100 bytes (the maxi-
mum descriptor size measured from the current Tor net-
work), and set the exit database to be half the size of the
middle database [45]. We varied the number of relays
in a PIR database, and computed a) PIR server computa-
tion, b) total communication, and c) client computation.

Data transfer for CPIR schemes can be reduced us-

 0.1

 1

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07

C
om

pu
te

 ti
m

e(
s)

Number of relays

R=1
R=2
R=3
R=4
R=5

(a) Server computation

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 b

yt
es

Number of relays

download
R=1
R=2
R=3
R=4
R=5

(b) Total communication

 1

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07

C
om

pu
te

 ti
m

e(
s)

Number of relays

R=1
R=2
R=3
R=4
R=5

(c) Client computation

Figure 3: CPIR cost. R denotes the recursion parameter in CPIR.

ing the recursive construction by Kushilevitz and Ostro-
vsky [21] without much increase in computational cost;
this recursion can be implemented in a single round of in-
teraction between the client and the server. We denote the
recursion parameter in CPIR using R. If we denote the
number of relays in the database by n, then the commu-
nication cost of CPIR in our architecture is proportional
to 8R · n1/(R+1).

Figure 3 depicts the server computation, communica-
tion, and client computation as a function of the number
of Tor relays for varying values of the recursion param-
eter R. Increasing R reduces communication (and client
computation) drastically while having only a small im-
pact on server computation. Note that for beyondR = 3,
communication increases again, because the term 8R in
the communication overhead becomes dominant. We can
see that when the number of relays is less than 20 000, the
server computational overhead using R = 2 is smaller
than R = 3, while the communication overhead using
R = 2 and R = 3 is about the same. Beyond 20 000
relays, using R = 3 results in significant communication
savings as compared to R = 2, while the server compu-
tational overhead is about the same for both parameters.
For the remainder of this discussion, we use R = 2. We
can see that as the network size scales, the communica-
tion overhead of CPIR is an order of magnitude smaller
than trivial download of the database. Interestingly, even
at the current network size, the communication overhead
of CPIR is smaller than a trivial download.

Now we discuss the issue of creating multiple cir-
cuits within a 3-hour interval (after which the directory
databases are refreshed and clients request new descrip-
tors). In this scenario, the trivial download has the ad-
vantage that any number of circuits can be created. Tor
clients rebuild a circuit after every 10 minutes, so they
could create 18 circuits every 3 hours with the commu-
nication overhead of a single trivial download. On the
other hand, the PIR-based architecture would require 18
PIR queries for middle nodes and another 18 for exit
nodes. We can see that unless the number of relays in the

database is greater than 40 000, trivial download is go-
ing to be more efficient than performing multiple CPIR
queries. Instead, we propose to perform b < 18 queries
for both middle and exit nodes, and reuse existing blocks
for more circuits. As we discuss in the security analysis,
reusing blocks does not affect the anonymity of a single
circuit, but may break the unlinkability of multiple cir-
cuits.

We now study some particular scaling scenarios in
more detail. For each of the following scenarios, we
will compute the number of cores required to support
the clients. Figure 4 depicts the required number of
CPU cores as a function of relays and clients. We also
study the communication overhead of CPIR-Tor, along
with a comparative analysis with the current Tor proto-
col. For this analysis, we set the number of blocks b = 1.
Note that both computation and communication over-
head for CPIR-Tor scale linearly with the desired number
of blocks. Our results are summarized in Table 1.

Scenario 1: Current Tor Size. Total number of si-
multaneous relays is 2 000. Total number of simulta-
neous clients is 250 000. For 2 000 relays, server com-
pute time is 0.2 second. The number of exit nodes is
around 1 000, and the corresponding server compute time
is 0.1 seconds. Thus to download a block from both the
middle and the exit databases, the total server compute
time is 0.3 seconds. Note that we are proposing to down-
load a block every 3 hours. A single directory server
would thus be able to support 36 000 clients

(
3·60·60

0.3

)
.

The total number of cores required to support 250 000
clients is only 7. As of February 2011, the size of the
Tor network consensus is 560 KB, while the total size
of the relay descriptors is about 3.3 MB. Thus the com-
munication overhead per client in the current Tor net-
work is about 1.1 MB every 3 hours (560 KB consensus
and 3300

6 KB relay descriptors), while the corresponding
overhead in our architecture is 2 MB. Thus, CPIR-Tor is
not suited for the current Tor network size.

Scenario 2: Increasing clients. Total number of re-
lays is fixed at 2 000. Total number of clients increases

Table 1: Summary of results: Comparison of overhead in Tor, CPIR and ITPIR. The communication overhead is
measured per client over a 3 hour interval.

Scenario Relays Clients Tor CPIR ITPIR
(MB) (MB / Cores) (MB / % Core Utilization per guard)

1 2000 250 000 1.1 2 / 7 0.2 / 0.425%
2 2000 2 500 000 1.1 2 / 70 0.2 / 4.25%

3 20 000 250 000 11 4 / 59 0.5 / 0.425%
4 20 000 2 500 000 11 4 / 553 0.5 / 4.25%

5 250 000 250 000 111 8 / 466 0.2 / 0.425%

by a factor of sc. The number of cores required to sup-
port sc · 250 000 clients is sc · 7 (linear increase). Thus if
the number of clients increases to 2.5 million, about 70
cores will be required to support the architecture. Both
the number of cores and the communication overhead of
the system increases linearly with the number of clients.

Scenario 3: Increasing relays. Total number of
relays increases by a factor of sr. Total number of
clients is fixed. The number of cores required to support
sr ·2 000 relays increases sublinearly with sr. For exam-
ple, when the number of relays increases from 2 000 to
20 000, the required number of cores increases from 7 to
59. Note that in this scenario, the communication over-
head for CPIR-Tor also scales sublinearly, while that of
current Tor scales linearly. Thus, as the number of relays
increases, it becomes more and more advantageous to
use CPIR-Tor. For instance, when the number of relays
is 20 000, the communication overhead of Tor is 11 MB
every 3 hours, while that of CPIR is only 4 MB.

Scenario 4: Increasing both clients and relays. To-
tal number of relays and clients increases by a factor
of s. The number of cores required to support s · 2 000
relays and s · 250 000 clients is strictly less than 7 · s2.
In order to support 20 000 relays and 2.5 million clients,
553 cores would be required. We note approximately
50% of the Tor relays are already directory servers, so
553 cores in this scenario is feasible. Again, as the num-
ber of relays increases, the advantage of CPIR-Tor over
Tor becomes larger.

Scenario 5: Converting clients to middle-only re-
lays. Observe that if all 250 000 clients converted to
middle-only relays, then the server compute time for the
middle database is 20 seconds, while that for the exit
database is still 0.1 seconds. Thus, the total number of
cores required to support this scenario is approximately
466. (This scenario is not shown in Figure 4.) As com-
pared to the current Tor network, CPIR reduces the com-
munication overhead in the network from 111 MB per
client every 3 hours to only 8 MB.

 0
 100
 200
 300
 400
 500
 600

 2 4 6 8 10 12 14 16 18 20 0
 0.5

 1
 1.5

 2
 2.5

 0
 100
 200
 300
 400
 500
 600

Cores

Relays
 (thousands)

Clients
 (milions)

Cores

Figure 4: Number of cores as a function of the number of
relays and clients (assuming half of the relays are exits).

8 Performance Evaluation of Information-
Theoretic PIR

We use an implementation [13] of the multi-server PIR
scheme by Goldberg [12] and compute the server compu-
tation, total communication, and client computation, for
varying values of the number of relays, using a descriptor
size of 2 100 bytes, and 3 servers.

Figure 5 plots server computation, total communica-
tion, and client computation as a function of the number
of Tor relays, using 3 PIR servers (the entry guards). We
note that the communication cost for a single ITPIR re-
quest is at least 2 orders of magnitude smaller than the
cost for a trivial download for all possible scaling sce-
narios.

Even if we compare the ITPIR-Tor protocol with the
Tor protocol over a period of 3 hours, where clients set up
18 circuits, still the communication overhead of ITPIR is
an order of magnitude smaller than a full download for
all scaling scenarios. Thus in this architecture, we do
not need to reuse blocks, providing security equivalent
to that of Tor, if at least a single guard relay is honest.
Recall that if all guard relays are compromised, then the
adversary can break user anonymity in both the current

 0.01

 0.1

 1

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07

C
om

pu
te

 ti
m

e(
s)

Number of relays

18 ITPIR
1 ITPIR

(a) Server computation

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1000 10000 100000 1e+06 1e+07

B
yt

es

Number of relays

download
18 ITPIR

1 ITPIR

(b) Total communication

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1000 10000 100000 1e+06 1e+07

C
om

pu
te

 ti
m

e(
s)

Number of relays

18 ITPIR
1 ITPIR

(c) Client computation

Figure 5: 3-server ITPIR cost.

Tor network as well as in PIR-Tor, by selectively deny-
ing service [4] to circuits that have an honest exit relay
(or destination server) and performing end-to-end timing
analysis [2] when the exit relay (or destination server) is
compromised.

We now explore various scaling scenarios for Tor, and
compute the number of clients that each guard relay can
support, along with a comparison of the communication
cost to that of Tor. Our results are summarized in Table 1.

Scenario 1: Current Tor Size. Total number of re-
lays is 2 000. Total number of clients is 250 000. For
2 000 relays, the number of exit nodes is around 1 000,
and the corresponding server compute time is 0.005 sec-
onds. Thus to support a single circuit, the total server
compute time is 0.005 seconds (for all three guards com-
bined). Note that each client builds a circuit every 10
minutes. A single guard relay would thus be able to sup-
port 360 000 clients. In the current Tor network, there
are 250 000 clients, and approximately 500 guard relays,
so each guard relay needs to service only 1500 clients on
average, and would utilize only 0.425% of one core. The
communication overhead of Tor is 1.1 MB per client ev-
ery 3 hours. In ITPIR, the cost to build a single circuit is
only 12 KB. Even if clients build 18 circuits over a three
hour interval, the total communication cost of all 18 cir-
cuits is 216 KB. Thus ITPIR is useful even with the size
of the current Tor network.

Scenario 2: Increasing clients. Total number of re-
lays is fixed at 2 000. Total number of clients increases
by a factor of sc. In order to support sc ·250 000 clients,
guard relays would need to utilize sc · 0.425% of a core.
Thus even when the number of clients increases to 2.5
million, but the number of guard relays stays fixed at 500,
then each guard relay only utilizes a 4.25% fraction of a
core. The total communication overhead in the system
increases linearly with the number of clients, similar to
the current Tor network.

Scenario 3: Increasing relays. Total number of
relays increases by a factor of sr. Total number of
clients is fixed. In order to support sr · 2 000 relays,

guard relays would need to utilize only 0.425% of a core.
This is because the size increase in the PIR database
is offset by the increase in the number of guard relays.
Thus, regardless of the number of relays in the system,
each guard relay utilizes only 0.425% of a core. Also, as
the number of relays increases, the advantage of ITPIR
over a full download in terms of communication cost also
increases. For instance, at 2 000 relays ITPIR is a factor
of 5 more efficient than Tor, while at 20 000 relays, IT-
PIR is a factor of 22 more efficient than Tor (516 KB per
client every 3 hours as compared to 11.1 MB in Tor).

Scenario 4: Increasing both clients and relays. To-
tal number of relays and clients increases by a fac-
tor of s. In order to support s · 250 000 clients, and
s · 2 000 relays, each guard relay would need to utilize
s · 0.425% of a core. Thus when the number of clients
is 2.5 million, and the number of relays is 20 000, each
guard relay utilizes 4.25% of a core. Even at 100 times
the current client base (25 million), 42% of one core is re-
quired, which may be reasonable in multi-core settings.
As the number of clients increases, the communication
overhead in both ITPIR and Tor increases linearly, while
as the number of relays increases, it becomes a lot more
advantageous to use ITPIR as compared to Tor.

Scenario 5: Converting clients to middle-only re-
lays. Observe that if all 250 000 clients converted to
middle-only relays, then the server compute time for the
guard relays remains unchanged, since PIR is not per-
formed over the middle database. Thus each guard relay
would still utilize only 0.425% of a core.

To further highlight the scalability of ITPIR, we also
consider a scenario where all 250 000 clients convert to
relays, with a similar distribution of guard/middle/exit
relays as in the current Tor network. The communication
overhead of ITPIR in this scenario is 1.7 MB per client
every 3 hours, while that of Tor is 137 MB — two orders
of magnitude higher.

9 Discussion

We now discuss some issues in, and ramifications of, our
design.

Comparison of CPIR vs. ITPIR. The CPIR-Tor ar-
chitecture does not require all guard relays to be direc-
tory servers, and is more easily integrated into the current
Tor network, where a random subset of the relays are di-
rectory servers. Moreover, it is ideal for the scenarios
where either a client’s browsing time is small (possibly
estimated using the client’s past Tor browsing history),
or the client is not interested in the unlinkability of its
connections. On the other hand, the ITPIR-Tor architec-
ture requires all guard relays to be directory servers, thus
requiring them to maintain a global view of the system,
but results in significant communication savings for the
clients. The ITPIR-Tor architecture can support a vari-
ety of client workloads, while providing a high level of
security. In particular, ITPIR-Tor can enable a very at-
tractive scenario where all clients become middle-only
relays, without any additional cost to the network, since
the middle relays are fetched for free (without doing PIR)
by the clients.

Robustness. Recall that each block of the descriptor
database is digitally signed by the trusted directory au-
thorities. These signatures prevent malicious PIR servers
from tricking clients into accepting false information.
However, such malicious servers could still deny service
to clients by returning garbage, or by not returning a re-
sponse at all. As we discuss next, in both CPIR-Tor and
ITPIR-Tor clients can easily detect this attack and can
stop using those malicious servers.

In CPIR-Tor, a malicious directory server could mod-
ify its own copy of the descriptor database in order to cor-
rupt blocks containing, for example, many honest nodes,
and leave with correct signatures those blocks containing
collaborating malicious nodes. Clients retrieving these
“malicious blocks” will be successful, but clients retriev-
ing “honest blocks” will not. In order to defend against
this, a CPIR-Tor client that receives even one corrupted
block (out of b requests) from a given (Byzantine) direc-
tory server should discard the entire response, and make
a new, freshly randomly chosen query for all b blocks
from a different server. It should also avoid using that
Byzantine server in the future.

In ITPIR-Tor, on the other hand, such a selective-
corruption attack is not possible unless all three guard
nodes are colluding. In the ITPIR-Tor setting, Byzantine
guard nodes can corrupt the result of the query, but not in
a way that depends on which block was requested. Un-
fortunately, with ITPIR-Tor as presented, although the
client will detect the corruption, it will not learn which

of the guard nodes was Byzantine. This can be rectified,
however, using the Byzantine robustness techniques of
the underlying ITPIR protocol [12]. In particular, a client
receiving blocks with correct signatures may safely use
those blocks. If there are corrupted blocks, the client can
identify which guard node(s) were Byzantine, and caus-
ing the corruption, by extending the queries for just the
corrupted blocks to additional guard nodes. When three
honest guard nodes are reached, even though the client
does not know a priori which are the honest ones, the
Byzantine nodes will be identified. However, this may
come at the cost of the Byzantine nodes (if there are at
least three) learning which exit block the client was inter-
ested in. Therefore, the client should not use the resulting
information to build circuits; it should only use it to learn
which nodes were Byzantine and thus should be avoided
in the future.

Additional scaling strategies. The Tor Project has
been actively working on improving its scaling proper-
ties. We now discuss some strategies under consideration
that may be implemented in the future. The first strategy
is to download relay descriptors on demand [34] during
the circuit construction process, as opposed to periodi-
cally fetching them in advance. Fetching descriptors on
demand would significantly reduce the communication
overhead in Tor. However, note that fetching descriptors
on demand does not satisfy our goal of efficient circuit
creation, since descriptor downloads increase circuit cre-
ation times.

The second strategy introduces the idea of microde-
scriptors [8], which contain all relay descriptor fields that
rarely change. All frequently changing fields are placed
in the network consensus. Clients download the network
consensus document frequently, but the microdescriptors
are cached on a long-term basis. We note that this pro-
posal is orthogonal to our architecture, and can be incor-
porated in the PIR-Tor protocol. In this case, the PIR
database would consist of only the network consensus
information. The size reduction in the PIR database be-
cause of the removal of microdescriptors would translate
into both computational and communication savings in
our architecture.

Computational puzzles to prevent DoS. In our archi-
tecture, directory servers act as PIR databases and per-
form computation to respond to user queries. This pro-
vides an opportunity to the attacker to launch a denial
of service (DoS) attack against the directory servers by
issuing multiple PIR queries. We propose to use com-
putational puzzles to mitigate the impact of this attack.
When a directory server begins to get computationally
congested, it starts to issue computational puzzles to

clients. Clients solve the computational puzzle and re-
turn the solution to the directory server. The directory
server verifies the puzzle solution, and only then starts
to spend computational resources to process the client’s
PIR query.

Impact of churn. In the current Tor network, as the
churn in the network increases, clients will have to down-
load the full list of network consensus and relay descrip-
tors more frequently. On the other hand, the impact of
churn on PIR-Tor is minimal, since only a small number
of directory servers or guards will need to download the
global view more frequently. In fact, as long as the rate
of database updates is longer than 10 minutes (it is cur-
rently set to 3 hours), we can expect the number of client
PIR queries to be the same.

Impact of number of circuits. The communication
overhead of PIR-Tor is directly proportional to the num-
ber of circuit constructions, since for optimal security,
clients need to perform 1 or 2 PIR queries per circuit.
Tor developers are already working on a proposal to have
a separate circuit for each application, to prevent certain
kinds of profiling [18]. In this scenario, since there is
a separate circuit per application, the timeout period for
each circuit can be increased from the current value of
10 minutes, to keep the impact of additional circuits on
our architecture minimal (since the timeout period is set
to 10 minutes in order to prevent those same profiling
attacks).

Incorporating future path constraints. There have
been several proposals that incorporate more constraints
in the Tor path selection protocol. For example, it
has been suggested that relays must be chosen to min-
imize the chance of an end-to-end timing analysis at-
tack [11, 27]. Also, Sherr et al. [40] proposed to enable
applications to choose relays based on different perfor-
mance constraints like node-based selection, link-based
selection, and end-to-end path-based selection. We note
that PIR-Tor is able to incorporate these ideas to the ex-
tent that each block fetched from the database contains
multiple descriptors, and clients could apply similar al-
gorithms to select the descriptor that best fits their con-
straints.

Preserving option to download global view. We note
that many use cases may require a global view of the
system. For example, it may be helpful to researchers or
developers working on improving the security and per-
formance of the Tor network to have a global view of
the system. Thus we propose that directory servers also
support an option to download the full database.

Limitations. The Tor network is comprised of volun-
teer nodes that contribute their bandwidth for anony-
mous communication. Our proposal essentially trades
off bandwidth for computation at the directory servers,
and thus directory servers are required to volunteer some
extra computational resources. We show in our perfor-
mance evaluation that only a small fraction of CPU re-
sources need to be volunteered by the designated direc-
tory servers, especially in the case of ITPIR-Tor. We be-
lieve that PIR-Tor offers a good tradeoff between band-
width and computational resources, and results in an
overall reduction in resource consumption at volunteer
nodes. Secondly, our design is not as scalable as alter-
nate peer-to-peer approaches, which can scale to tens of
million relays. However, our design provides improved
security properties over prior work. In particular, reason-
able parameters of PIR-Tor provide equivalent security
to that of the Tor network. The security of our archi-
tecture mostly depends on the security of PIR schemes
which are well understood and relatively easy to analyze,
as opposed to peer-to-peer designs that require analyzing
extremely complex and dynamic systems. The only ex-
ception to this is the scenario of CPIR-Tor with descrip-
tor re-use, where the security analysis is more complex.
Moreover, for all scaling scenarios, the communication
overhead in our architecture is at least an order of mag-
nitude smaller than that of Tor. Finally, PIR-Tor assumes
the use of a small set of standard exit policies for nodes
to select from, though a few outliers can be tolerated by
downloading their information in their entirety.

10 Conclusion

In this paper, we presented PIR-Tor, an architecture for
the Tor network where clients do not need to maintain a
global view of the system, and instead leverage private
information retrieval techniques to protect their privacy
from compromised directory servers. In our evaluation,
we find that PIR-Tor reduces the communication over-
head of the Tor network by at least an order of magni-
tude. We analyzed two flavors of our architecture, based
on computational PIR and information-theoretic PIR re-
spectively. In computational PIR, clients fetch only a few
blocks from the PIR database, and reuse blocks to build
additional circuits. While this modification has no im-
pact on client anonymity, it slightly weakens the unlink-
ability of circuits. On the other hand, in information-
theoretic PIR, clients perform a PIR query per circuit
creation and do not reuse blocks, resulting in a level of
security that is equivalent to the Tor network. While
information-theoretic PIR requires all guard relays to be
directory servers, computational PIR is more easily inte-
grated into the current Tor network.

Acknowledgments

We are grateful to Roger Dingledine for helpful discus-
sions about Tor. This work also benefited from the feed-
back of HotSec 2010 attendees, particularly Micah Sherr.
We would also like to thank the anonymous reviewers
for their comments on earlier drafts of this paper. Femi
Olumofin and Ian Goldberg were supported in part by
NSERC, MITACS, and The Tor Project. Carmela Tron-
coso is a research assistant of the Fund for Scientific Re-
search in Flanders (FWO), and was supported in part by
the the IAP Programme P6/26 BCRYPT of the Belgian
State. Prateek Mittal and Nikita Borisov were supported
in part by an HP Labs IRP grant and an NSF grant CNS
09–53655.

References
[1] C. Aguilar-Melchor and P. Gaborit. A lattice-based

computationally-efficient private information retrieval
protocol, 2007. Presented at WEWORC 2007. http:
//eprint.iacr.org/2007/446.pdf, Accessed Febru-
ary 2011.

[2] K. S. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. C.
Sicker. Low-resource routing attacks against Tor. In Ting Yu, ed-
itor, ACM Workshop on Privacy in the Electronic Society (WPES
2007), pages 11–20. ACM, 2007.

[3] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the
Weil pairing. In C. Boyd, editor, 7th International Conference
on the Theory and Application of Cryptology and Information
Security (ASIACRYPT 2001), volume 2248 of Lecture Notes in
Computer Science, pages 514–532. Springer, 2001.

[4] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz. Denial of service
or denial of security? In S. De Capitani di Vimercati and P. F.
Syverson, editors, ACM Conference on Computer and Communi-
cations Security (CCS 2007), pages 92–102. ACM, 2007.

[5] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private in-
formation retrieval. In IEEE Annual Symposium on Foundations
of Computer Science (FOCS 95), pages 41–50, 1995.

[6] G. Danezis and R. Clayton. Route fingerprinting in anonymous
communications. In A. Montresor, A. Wierzbicki, and N. Shah-
mehri, editors, International Conference on Peer-to-Peer Com-
puting (P2P 2006), pages 69–72. IEEE Computer Society, 2006.

[7] G. Danezis and P. F. Syverson. Bridging and fingerprinting: Epis-
temic attacks on route selection. In N. Borisov and I. Goldberg,
editors, 8th Privacy Enhancing Technologies Symposium (PETS
2008), volume 5134 of Lecture Notes in Computer Science, pages
151–166. Springer, 2008.

[8] R. Dingledine. Clients download consensus + microde-
scriptors. https://gitweb.torproject.org/
tor.git/blob/master:/doc/spec/proposals/
158-microdescriptors.txt, January 2009. Accessed
February 2011.

[9] R. Dingledine and N. Mathewson. Anonymity loves company:
Usability and the network effect. In 5th Workshop on the Eco-
nomics of Information Security (WEIS 2006), 2006.

[10] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In 13th USENIX Security Symposium,
pages 303–320. USENIX, 2004.

[11] M. Edman and P. Syverson. AS-awareness in Tor path selection.
In S. Jha and A. D. Keromytis, editors, ACM Conference on Com-
puter and Communications Security (CCS 2009), pages 380–389.
ACM, 2009.

[12] I. Goldberg. Improving the robustness of private information re-
trieval. In IEEE Symposium on Security and Privacy (S&P 2007),
pages 131–148. IEEE Computer Society, 2007.

[13] I. Goldberg. Percy++, 2010. https://sourceforge.net/
projects/percy/.

[14] P. Golle and K. Partridge. On the anonymity of home/work lo-
cation pairs. In H. Tokuda, M. Beigl, A. Friday, A. J. Bernheim
Brush, and Y. Tobe, editors, 7th International Conference Perva-
sive Computing (Pervasive 2009), volume 5538 of Lecture Notes
in Computer Science, pages 390–397. Springer, 2009.

[15] GPGPU Team. High-speed PIR computation on GPU on
Assembla. http://www.assembla.com/spaces/pir_
gpgpu/.

[16] S. Hansen. AOL removes search data on vast group of web users,
October 2006. New York Times.

[17] D. Herrmann and lexi. Contemporary profiling of web users,
December 2010. Presented at the 27th Chaos Communication
Congress in Berlin on December 27, 2010.

[18] R. Hogan, J. Appelbaum, D. McCoy, and N. Mathew-
son. Separate streams across circuits by connection
metadata. https://gitweb.torproject.org/
tor.git/blob/master:/doc/spec/proposals/
171-separate-streams.txt, December 2010. Accessed
February 2011.

[19] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling. Mea-
surements and mitigation of peer-to-peer-based botnets: A case
study on storm worm. In F. Monrose, editor, 1st USENIX
Workshop on Large-scale Exploits and Emergent Threats (LEET
2008). USENIX Association, 2008.

[20] J. B. Kowalski. Tor network status. http://torstatus.
blutmagie.de/. Accessed February 2011.

[21] E. Kushilevitz and R. Ostrovsky. Replication is not needed: sin-
gle database, computationally-private information retrieval. In
IEEE Annual Symposium on Foundations of Computer Science
(FOCS 97), pages 364–373, 1997.

[22] J. McLachlan, A. Tran, N. Hopper, and Y. Kim. Scalable onion
routing with Torsk. In S. Jha and A. D. Keromytis, editors, ACM
Conference on Computer and Communications Security, pages
590–599. ACM, 2009.

[23] P. Mittal and N. Borisov. Information leaks in structured peer-to-
peer anonymous communication systems. In P. F. Syverson and
S. Jha, editors, ACM Conference on Computer and Communica-
tions Security (CCS 2008), pages 267–278. ACM, 2008.

[24] P. Mittal and N. Borisov. ShadowWalker: peer-to-peer anony-
mous communication using redundant structured topologies. In
S. Jha and A. D. Keromytis, editors, ACM Conference on Com-
puter and Communications Security (CCS 2009), pages 161–172.
ACM, 2009.

[25] P. Mittal, N. Borisov, C. Troncoso, and A. Rial. Scalable anony-
mous communication with provable security. In 5th USENIX
conference on Hot topics in security (HotSec’10), pages 1–16.
USENIX Association, 2010.

[26] Prateek Mittal, Femi Olumofin, Carmela Troncoso, Nikita
Borisov, and Ian Goldberg. PIR-Tor: Scalable anonymous com-
munication using private information retrieval. Technical Re-
port CACR 2011-05, Centre for Applied Crytpographic Re-
search, 2011. http://www.cacr.math.uwaterloo.ca/
techreports/2011/cacr2011-05.pdf.

[27] S. J. Murdoch and P. Zielinski. Sampled traffic analysis by
internet-exchange-level adversaries. In N. Borisov and P. Golle,
editors, Privacy Enhancing Technologies Workshop (PET 2007),
volume 4776 of Lecture Notes in Computer Science, pages 167–
183. Springer, 2007.

[28] Steven J. Murdoch and Robert N.M. Watson. Metrics for secu-
rity and performance in low-latency anonymity systems. In Pro-
ceedings of the 8th Privacy Enhancing Technologies Symposium
(PETS 2008), July 2008.

[29] A. Nambiar and M. Wright. Salsa: a structured approach to large-
scale anonymity. In R. N. Wright and S. De Capitani di Vimer-
cati, editors, 13th ACM Conference on Computer and Communi-
cations Security (CCS 2006)), pages 17–26. ACM, 2006.

[30] A. Narayanan and V. Shmatikov. Robust de-anonymization of
large sparse datasets. In IEEE Symposium on Security and Pri-
vacy (S&P 2008), pages 111–125. IEEE Computer Society, 2008.

[31] T.-W. Ngan, R. Dingledine, and D. S. Wallach. Building incen-
tives into Tor. In 14th International Conference on Financial
Cryptography and Data Security (FC 2010), volume 6052 of Lec-
ture Notes in Computer Science, pages 238–256. Springer, 2010.

[32] F. Olumofin and I. Goldberg. Revisiting the computational practi-
cality of private information retrieval. In 15th International Con-
ference on Financial Cryptography and Data Security (FC 2011),
Lecture Notes in Computer Science. Springer, 2011.

[33] L. Øverlier and P. Syverson. Locating hidden servers. In IEEE
Symposium on Security and Privacy (S&P 2006). IEEE Computer
Society, 2006.

[34] P. Palfrader. Download server descriptors on de-
mand. https://gitweb.torproject.org/tor.
git/blob/master:/doc/spec/proposals/
141-jit-sd-downloads.txt, June 2008. Accessed
February 2011.

[35] A. Panchenko, S. Richter, and A. Rache. NISAN: network infor-
mation service for anonymization networks. In S. Jha and A. D.
Keromytis, editors, ACM Conference on Computer and Commu-
nications Security (CCS 2009), pages 141–150. ACM, 2009.

[36] M. Perry. Securing the Tor network, July 2007. Presented at
Black Hat USA on July 2007.

[37] J.-F. Raymond. Traffic analysis: Protocols, attacks, design issues,
and open problems. In H. Federrath, editor, Proceedings of De-
signing Privacy Enhancing Technologies: Workshop on Design
Issues in Anonymity and Unobservability, volume 2009 of Lec-
ture Notes in Computer Science, pages 10–29. Springer-Verlag,
2000.

[38] M. Rennhard and B. Plattner. Introducing MorphMix: Peer-to-
peer based anonymous internet usage with collusion detection. In
S. Jajodia and P. Samarati, editors, ACM Workshop on Privacy in
the Electronic Society (WPES 2002), pages 91–102. ACM, 2002.

[39] M. Schuchard, A. W. Dean, V. Heorhiadi, N. Hopper, and Y. Kim.
Balancing the shadows. In K. Frikken, editor, 9th ACM workshop
on Privacy in the electronic society (WPES 2010), pages 1–10.
ACM, 2010.

[40] M. Sherr, A. Mao, W. R. Marczak, W. Zhou, B. Thau Loo, and
M. Blaze. A3: An extensible platform for application-aware
anonymity. In Proceedings of the Network and Distributed Sys-
tem Security Symposium (NDSS 2010), pages 247–266. The In-
ternet Society, 2010.

[41] R. Snader and N. Borisov. A tune-up for Tor: Improving security
and performance in the Tor network. In Proceedings of the Net-
work and Distributed System Security Symposium (NDSS 2008).
The Internet Society, 2008.

[42] Robin Snader and Nikita Borisov. Improving security and
performance in the Tor network through tunable path selec-
tion. IEEE Transactions on Dependable and Secure Computing,
2010. http://dx.doi.org/10.1109/TDSC.2010.40
(preprint).

[43] L. Sweeney. Weaving technology and policy together to maintain
confidentiality. Journal of Law, Medicine and Ethics, 25:98–110,
1997.

[44] P. Tabriz and N. Borisov. Breaking the collusion detection mech-
anism of MorphMix. In G. Danezis and P. Golle, editors, Privacy
Enhancing Technologies (PETS 2006), volume 4258 of Lecture
Notes in Computer Science, pages 368–383. Springer, 2006.

[45] The Tor Project. Tor metrics portal, February 2011.
http://metrics.torproject.org/.

[46] The Tor Project. Who uses Tor. http://www.torproject.
org/about/torusers.html.en. Accessed Februrary
2011.

[47] A. Tran, N. Hopper, and Y. Kim. Hashing it out in public: com-
mon failure modes of DHT-based anonymity schemes. In S. Para-
boschi, editor, 8th ACM Workshop on Privacy in the Electronic
Society (WPES 2009), pages 71–80. ACM, 2009.

[48] Q. Wang, P. Mittal, and N. Borisov. In search of an anonymous
and secure lookup: attacks on structured peer-to-peer anonymous
communication systems. In A. D. Keromytis and V. Shmatikov,
editors, ACM Conference on Computer and Communications Se-
curity (CCS 2010), pages 308–318. ACM, 2010.

