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Abstract. Anonymous communication systems ensure that correspon-
dence between senders and receivers cannot be inferred with certainty.
However, when patterns are persistent, observations from anonymous
communication systems enable the reconstruction of user behavioral pro-
files. Protection against profiling can be enhanced by adding dummy
messages, generated by users or by the anonymity provider, to the com-
munication. In this paper we study the limits of the protection provided
by this countermeasure. We propose an analysis methodology based on
solving a least squares problem that permits to characterize the adver-
sary’s profiling error with respect to the user behavior, the anonymity
provider behavior, and the dummy strategy. Focusing on the particular
case of a timed pool mix we show how, given a privacy target, the per-
formance analysis can be used to design optimal dummy strategies to
protect this objective.
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1 Introduction

Anonymization is a popular mechanism to provide private communications.
Anonymous communication [1] ensures that relationships between senders and
receivers of messages cannot be inferred with certainty by the adversary. These
schemes hide communication patterns by delaying and changing the appearance
of messages [2] in such a way that sent messages can be ascribed to a set of
potential receivers, often denoted as anonymity set. In practice, user behavior
and latency constrain the composition of anonymity sets, which in turn enables
an adversary observing the anonymous communication system to reconstruct
persistent behavioral user profiles [3–6].

A common approach to improve users’ protection against profiling is to
introduce dummy traffic, either generated by users [7] or by the anonymity
provider [8]. The effectiveness of this countermeasure has been studied theoreti-
cally from the perspective of individual messages in [9]. With respect to profiling,
dummy traffic has been tackled in [5, 10], where the authors empirically compute
the number of rounds that the attacker takes to correctly identify some or all
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recipients of a sender. The analyses in [5, 10] are limited in two aspects. On the
one hand, the results strongly depend on the specific cases considered in the
experiments, and it is difficult to get insight on their applicability to other sce-
narios. On the other hand, the analyses only consider the ability of the adversary
in identifying communication partners, but not her accuracy at estimating the
intensity of the communication; i.e., the users’ profiles.

In this paper we propose an analysis methodology based on the least squares
approach introduced in [6] that permits system designers to characterize the
adversary’s profiling error with respect to the user behavior, the anonymity
provider behavior, and the dummy strategy. Our estimator can be used to cha-
racterize the error for bilateral relationships, individual user profiles, or the popu-
lation as a whole. Our approach can accommodate a wide range of high-latency
anonymous communication schemes providing the analyst with a bound on the
protection achievable through the use of dummy traffic.

Another shortcoming of previous works [5, 9, 10] is that the proposed evalua-
tion strategies cannot be used to guide the design of effective dummy generation
strategies, which is recognized to be a hard problem [11]. This has lead the
deployed high latency anonymous communication systems to either implement
arbitrary dummy strategies [12] or no dummy traffic at all [11]. Our metho-
dology can be used to support the design of dummy strategies by approaching
strategy selection as an optimization problem in which the error of the adver-
sary is maximized. The optimization criteria can be chosen by the designer to
satisfy different privacy objectives, e.g., balancing the protection among users,
or favoring individual users or relationships.

We illustrate the operation of our methodology using a timed binomial pool
mix. We provide a performance analysis of this mixing strategy in presence of
both static sender-based and mix-based dummy traffic, showing that their con-
tribution to the adversary’s error can be decoupled and analyzed independently.
Departing from this analysis we design dummy traffic strategies according to two
privacy criteria: increasing the estimation error for all relationships by a con-
stant factor, and guaranteeing a minimum estimation error for any relationship.
By hiding relationships, both criteria hinder the inference of user profiles.

Next section describes an abstract model of an anonymous communication
system with dummies, and Section 3 introduces a least squares-based profile
estimator. We analyze in Sect. 4 the performance of this estimator when the
anonymous channel is a timed binomial pool mix. The result of this analysis
is used in Sect. 5 to design optimal dummy strategies, evaluated in Sect. 6. We
discuss practical aspects of our method in Sect. 7 and finally conclude in Sect. 8.

2 System and Adversary Model

In this section we introduce the system and adversary model considered in the
paper, as well as the general notation of the paper (summarized in Table 1).
Throughout the document we use capital letters to denote random variables and
lower-case letters to denote their realizations. Vectors and matrices are denoted
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by boldface characters. Vectors of random variables are upper-cased, while their
realizations are lower cased. Matrices are always denoted by upper-case boldface
characters; whether they are random matrices or realizations will be clear from
the context. Furthermore, we use 1n to denote the all-ones column vector of size
n, 1n×m to denote the all-ones n×m matrix and In for the n×n identity matrix.

System Model. Our system consists of a population of N senders, designated
by index i ∈ {1, 2, · · · , N}, which exchange messages with a set of M receivers,
designated by index j ∈ {1, 2, · · · ,M}, through a high-latency mix-based anony-
mous communication channel. Messages in the system may be real or dummy
messages: decoy messages indistinguishable from real traffic. We consider two
types of dummy traffic:

– Sender-based dummies: senders may send dummy messages to the mix
along with their real messages. Sender-based dummies are recognized and
discarded by the mix.

– Mix-based dummies: the mix-based system may send dummy messages
to the receivers along with the real messages from the senders. Receivers are
able to identify dummy messages and discard them.

Mix-based anonymous communication channels protect profiles by delaying
messages and outputting them in batch in what are called rounds of mixing.
We consider that the total number of messages generated by user i in round r
is modeled by the random variable Xr

i . User messages can be real, modeled by
random variable Xr

λ,i, or dummy, modeled by Xr
δ,i. These messages are sent to

an anonymous communication channel in which a round of mixing consists of
the following sequence of four stages, shown in Fig. 1. In the first stage, dummy
messages are identified and discarded (Stage 1), while the real messages go inside
the pool (Stage 2). Messages inside the pool are delayed until a specific firing
condition is fullfilled, and then a number of them, chosen according to a batch-
ing strategy, exit the pool. Messages leaving the pool (modeled by Xr

s,i) traverse
a mixing block (Stage 3), which changes their appearance cryptographically to
avoid bit-wise linkability. Messages staying in the pool are mixed with incoming
real messages from subsequent rounds until they are fired. Finally, mix-based
dummies are added the output traffic and messages are delivered to their recipi-
ents (Stage 4). The number of mix-based dummies sent in round r is modeled by
Xr

MIX, and random variables Y rλ,j , Y
r
δ,j and Y rj model the number of real, dummy,

and total messages received by receiver j in round r, respectively.
We also define the following vectors and matrices, which shall come handy

later: matrix U is an ρ×N matrix which contains all the input observations, i.e.,
its (r, i)-th element is Xr

i . Similarly, matrix Us contains in its (r, i)-th position
the random variable Xr

s,i. Moreover, H
.
= IM ⊗U and Hs

.
= IM ⊗Us, where

⊗ denotes the Kronecker product. Vectors Yj
.
= [Y 1

j , · · · , Y
ρ
j ]T and Ŷδ,j

.
=

[Y 1
δ,j , · · · , Y

ρ
δ,j ]

T contain the random variables modeling the total (or just dummy)

number of messages received by j in each round. Finally, Y
.
= [YT

1 , · · · ,YT
M ]T

and Ŷδ
.
= [ŶT

δ,1, · · · , ŶT
δ,M ]T .
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Fig. 1: Abstract model of a round in a mix-based anonymous communications
channel (we omit the subscript r for the sake of clarity.)

We model the sending behavior of users in our population with two param-
eters:

– Probability of real message: the probability of real messages models how
frequently users send real messages, and is denoted by Pλi

, i = 1, · · · , N .
In other words, a message sent by i is real with probability Pλi

, dummy
otherwise. We make no assumptions on the values of Pλi other than 0 ≤
Pλi ≤ 1, and that the probabilities of real messages are static during the
observation period. Note that Pλi

does not constrain the distributions that
model the number of messages sent by users (Xr

i , Xr
λ,i and Xr

δ,i).
– Sender profile: the sender profile of user i models this sender’s choice of re-

cipients for her messages. It is defined as the vector qi
.
= [p1,i, p2,i, · · · , pM,i]

T ,
where pj,i denotes the probability that sender i sends a real message to re-
ceiver j. We also define the unnormalized receiver profile pj

.
= [pj,1, · · · , pj,N ]T

and the vector containing all transition probabilities p
.
= [pT1 , · · · ,pTM ]T . We

make no assumptions on the shape of the sender profiles other than qi is in

P, the probability simplex in RM , i.e., P .
=
{

r ∈ RM : ri ≥ 0,
∑M
i=1 ri = 1

}
.

We assume, nevertheless, that users’ behavior is stationary during the ob-
servation period (the transition probabilities pj,i do not change between
rounds), independent (the behavior of a user does not affect the behavior
of the others) and memoryless (the messages sent by a user in a round do
not affect the behavior of that user in subsequent rounds). We discuss the
implications of the hypotheses above being false in Sect. 7.

The behavior of the mix-based anonymous communication channel is mode-
led by four parameters:

– Firing condition: the firing condition is an event, e.g., the arrival of a
message (theshold mix) or the expiration of a timeout (timed mix), that
causes the mix to forward some of the messages it has stored in its pool to
their recipients.

– Batching strategy: the batching strategy models how messages are chosen
to leave the pool. This strategy is determined by the function Fr,k, which
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models the probability that a message arriving in round k leaves the mix
in round r (r ≥ k). We do not make any assumption on the values of these
parameters, other than

∑∞
r=k Fr,k = 1, i.e., every message will eventually

leave the pool and get to its recipient. This function can for instance model
a threshold mix (Fk,k = 1), or a binomial pool mix [10, 5].

– Average mix-based dummies: this parameter, denoted as δMIX, defines
the average number of dummy messages generated by the mix each round.
Note that our model does not assume any specific distribution for the number
of mix-based dummies that are generated each round.

– Mix dummy profile: we denote by qMIX the vector modeling the distribu-
tion of mix-based dummies among the receivers, qMIX

.
= {p1,MIX, · · · , pM,MIX}

where pj,MIX is the probability that a dummy message generated by the mix
is sent to receiver j (qMIX ∈ P).

Adversary Model. We consider a global passive adversary that observes the
system during ρ rounds. The adversary is able to see the identity of each sender
and receiver communicating through the mix, but she is not able to link any two
messages by their content nor distinguish between real and dummy messages.
We assume that the adversary knows all the parameters of the system (e.g., the
batching strategy determined by Fr,k, the parameters modeling the generation
of dummy messages Pλi

and δMIX, the mix dummy profile qMIX). The goal of
the adversary is to infer the sending profiles of the users in the system from
the observations, i.e., to obtain an estimator p̂j,i of the probabilities pj,i given
the input and output observations xri and yrj , for every i ∈ {1, 2, · · · , N}, j ∈
{1, 2, · · · ,M} and r ∈ {1, 2, · · · , ρ}.

3 A Least Square Profile Estimator for Dummy-based
Anonymization Systems

We aim here at deriving a least squares estimator for the probabilities pj,i for
every i = 1, 2, · · · , N and j = 1, 2, · · · ,M , given the observation of ρ rounds of
mixing, xri and yrj for r = 1, · · · , ρ and ∀i, j. Following the methodology in [13],
we derive the estimator of pj,i by looking for the vector of probabilities p which
minimizes the Mean Squared Error (MSE) between the random vector Y and
the observed realization y:

p̂ = arg min
qi∈P, i=1,··· ,N

E
{
||y −Y(p)||2

}
(1)

where we have written Y(p) to stress the fact that the output distribution
depends on all the transition probabilities p. Note that, for notational simplicity,
we are dropping the conditioning on U here. Even though the estimator in (1)
minimizes the average error in the outputs, this does not mean it necessarily
minimizes the error in the estimation of the probabilities p. As shown in the
derivations in [13], one can set the alternative problem

p̂ = arg min
qi∈P, i=1,··· ,N

{
||y − E {Y(p)} ||2

}
(2)
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Table 1: Summary of notation
Symbol Meaning

N Number of senders in the population, denoted by i ∈ {1, 2, · · · , N}
M Number of receivers in the population, denoted by j ∈ {1, 2, · · · ,M}
Fr,k Probability that a message arriving in round k leaves in round r
pj,i Probability that user i sends a real message to receiver j
pj,MIX Probability that the mix sends a mix-based dummy message to receiver j
qi Sender profile of sender i, qi

.
= [p1,i, p2,i, · · · , pM,i]T

qMIX Mix dummy profile, qMIX
.
= [p1,MIX, p2,MIX, · · · , pM,MIX]T

pj Unnormalized receiver profile for receiver j, pj
.
= [pj,1, pj,2, · · · , pj,N ]T

p Vector of transition probabilities, p
.
= [pT1 ,p

T
2 , · · · ,pTM ]T

Pλi Probability that user i sends a real message instead of a dummy
δMIX Average number of mix-based dummies generated by the mix each round

ρ Number of rounds observed by the adversary
xrλ,i(x

r
δ,i) Number of real (dummy) messages sent by user i in round r

xri Total number of messages sent by user i in round r, xri
.
= xrλ,i + xrδ,i

xrs,i Number of real messages sent by user i that leave the pool in round r
yrλ,j(y

r
δ,j) Number of real (dummy) messages received by j in round r

yrj Total number of messages received by j in round r, yrj
.
= yrλ,j + yrδ,j

xrMIX Number of mix-based dummies generated by the mix in round r
U (Us) ρ×N matrix with all input observations (U)r,i = xri ((Us)r,i = xrs,i)
H (Hs) IM ⊗U (IM ⊗Us)
yj Column vector containing the values yrj for r = 1, · · · , ρ
yδ,j Column vector containing the values yrλ,j for r = 1, · · · , ρ
y Column vector containing all the output messages y

.
= [yT1 ,y

T
2 , · · · ,yTM ]T

yδ Vector of output dummies yδ
.
= [yTδ,1,y

T
δ,2, · · · ,yTδ,M ]T

p̂j,i, p̂j , p̂, Adversary’s estimation of pj,i, pj and p, respectively.
ŷδ, ŷδ,j Adversary’s estimation of yδ,j and yδ.

Ûs, Ĥs Adversary’s estimation of Us and Hs.

in order to get an estimator p̂ that is not only unbiased, but also asymptotically
efficient, i.e., the vector of estimated probabilities p̂ converges to the true value
as the number of observations increases ρ→∞.

From the relations among the variables in Fig. 1, we can compute the ex-
pected value of the output Y(p) given the input observations U obtaining

E {Y(p)} = Ĥs · p + ŷδ (see Appendix), where

– Ĥs
.
= IM ⊗ Ûs, and Ûs (see (31)) is the matrix containing the attacker’s

estimation of the hidden random variables Xr
s,i, which model the number of

messages from user i that leave the mix in round r (cf. Fig. 1).
– ŷδ is the adversary’s estimation of the number of mix-based dummies that are

sent to each receiver in each round, and is given by ŷδ = (IM ⊗ δMIX1ρ) ·qMIX.

Interestingly, removing the constraints from (2) leads to an estimator which
is still unbiased and asymptotically efficient, as proven in [13], and also makes a



Limits of dummy traffic protection in anonymous communications 7

detailed performance analysis manageable as we show in Sect. 4. In the rest of
this section we focus on the unconstrained estimator and refer to [13] for further
information about the constrained variant. The solution to the unconstrained
problem

p̂ = arg min
qi i=1,··· ,N

{
||y − Ĥs · p− ŷδ||2

}
(3)

is given by the Moore-Penrose pseudo-inverse, i.e., p̂ = (ĤT
s Ĥs)

−1ĤT
s (y − ŷδ).

This solution can be decoupled [13] resulting in a more tractable and efficient
equation, where ŷδ,j

.
= δMIXpj,MIX1ρ contains the expected number of mix-based

dummies sent to receiver j in each round,

p̂j = (ÛT
s Ûs)

−1ÛT
s (yj − ŷδ,j) j = 1, · · · ,M (4)

Given the system parameters as well as the input and output observations U and
y, the adversary can use (4) to get an estimation of the users’ sending profiles.

4 Performance Analysis of the Least Squares Estimator
in a Timed Pool Mix Anonymous Communication
System with Dummies

In this section, we assess the performance of the least-squares estimator in (4)
with respect to its profiling accuracy, measured as the Mean Squared Error of the
estimated transition probabilities pj,i (MSEj,i = |p̂j,i − pj,i|2) representing users’
behavior. We have chosen to analyze the performance of this estimator because
it is, to the best of our knowledge, the best estimator of the users’ profiles that
accounts for dummy traffic. The only attack in the literature extended to cover
dummy traffic is the Statistical Disclosure Attack (SDA) [10, 11] and it is already
shown in [13, 14] that the least squares-based approach performs asymptotically
better than SDA. It must be noted that the Bayesian inference estimator (Vida)
in [4] may return a better estimation than our least squares estimator. However,
its computational cost is huge even for a threshold mix [13] and it would become
prohibitive in a pool mix with dummies.

For the performance analysis in this section, we consider the particular case
when the anonymous communication channel is a binomial timed pool mix [15],
and the number of messages sent by the users, as well as the dummies generated
by the mix, are Poisson-distributed. In a binomial timed pool mix, the firing
condition is a timeout and the batching strategy mandates that individual mes-
sages leave the pool with probability α every round, i.e., Fr,k = α(1 − α)r−k.
The behavior of this mix is stationary, since the value of Fr,k only depends on
the difference r − k. Using λi as the sending rate, and δi as the dummy rate,
representing the average number of real messages, respectively dummies, sent by
user i, this scenario can be summarized as

Xr
λ,i ∼ Poiss (λi) , Xr

δ,i ∼ Poiss (δi) , Xr
MIX ∼ Poiss (δMIX)

Pλi = λi/(λi + δi), Fr,k = α(1− α)r−k
(5)
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Even though the results we provide correspond to the above case we must stress
that the reasoning followed in the derivation is applicable to any other system
that can be represented by the model in Sect. 2.

4.1 Profiling error of the least squares estimator

Under the hypotheses stated in (5), the least squares estimator is unbiased and,
defining αq

.
= α/(2−α) and αr

.
= α(2−α)/(2−α(2−α)), the MSEj,i of a single

transition probability estimated is given by [16]:

MSEj,i ≈
1

ρ
· 1

αq
· 1

λi
·
(

1 +
δi
λi

)
·

(
1− λi + δi∑N

k=1(λk + δk)

)
·

(
N∑
k=1

λkpj,k + δMIXpj,MIX −
αq
αr

N∑
k=1

λkPλk
p2j,k

) (6)

This result holds when: i) the probability that each sender sends a message to
receiver j is negligible when compared to the rate at which receiver j receives
messages from all users (pj,i �

∑
k λkpj,k), ii) the number of rounds observed is

large enough (ρ→∞), and iii) λi + δi � (
∑
k(λk + δk))

2
.

Interestingly, the terms in (6) that depend on i and j in can be decoupled,

MSEj,i ≈
1

ρ
· 1

αq
· εs(i) · εr(j) (7)

where εs(i) and εr(j) denote functions that only depend on the sender i and the
receiver j respectively. This property proves to be very useful when designing
strategies to distribute the dummy traffic as we later see in Sect. 5.

The latter expression allows to extract qualitative conclusions on the protec-
tion dummy traffic offers to senders and receivers. As it was already shown in
[13], the MSE decreases with the number of rounds observed as 1/ρ, and delay-
ing messages in the pool increases the MSEj,i by a factor (2− α)/α with respect
to a scenario with no delay (i.e., α = 1).

We now analyze the contribution to the MSE of the users’ behavior. The
sender-side contribution εs(i) consists of three terms:

εs(i) =
1

λi
·
(

1 +
δi
λi

)
·

(
1− λi + δi∑N

k=1(λk + δk)

)
(8)

1. The term 1/λi implies that the error when estimating the profile qi =
[p1,i, · · · , pM,i]

T decreases as that user participates in the system more often.
Naturally, when more information about the user becomes available to the
adversary, it becomes easier to accurately estimate her behavior.

2. The second term, 1 + δi/λi, is always larger or equal than one, meaning that
sender-based dummies always hinder the attacker’s estimation. The weight
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of this component depends on the ratio between the dummy rate and the
sending rate. Hence, a user who sends real messages very often would need
to send many more dummies to get the same level of protection than a user
who rarely participates in the system.

3. The last term is in general negligible since, in a normal scenario, the parti-
cipation of a single user is negigible when compared to the total traffic, i.e.,
λi + δi �

∑N
k=1(λk + δk). However, when user i’s traffic is clearly dominant

among the others, this term decreases the overall gain i gets from dummies.
Therefore, although sender-based dummies always increase the protection of
a user, they offer diminishing returns when only one user is trying to protect
herself by sending dummies.

On the other hand, receiver-side contribution, εr(j), consists of three sum-
mands:

εr(j) =

N∑
k=1

λkpj,k + δMIXpj,MIX −
αq
αr

N∑
k=1

λkPλk
p2j,k (9)

1. The first summand is the rate at which j receives real messages from the
senders. We call this term receiver rate and denote it by λ′j . It is interesting to
note that, contrary to the sending rates where large values of λi compromise
the anonymity of the senders; large values of receiver rates increase the
protection of the receivers. In other words, it is harder for the attacker to
estimate probabilities related to a receiver which is contacted by a large
number of senders than related to one receiving few messages.

2. The second summand is the rate at which j receives dummy messages from
the mix. The interesting part about this summand is that it can be adjusted
by the mix, to give more protection to a specific receiver j by increasing the
number of dummies addressed to that recipient, i.e., increasing pj,MIX.

3. The last summand depends on the mix parameters and the users’ behavior.
Since αq/αr ≤ 1 and Pλk

≤ 1, when users do not focus their messages
in few others, i.e., pj,i � 1, this summand becomes negligible. However, if
there is no dummy traffic (Pλk

= 1 and δMIX = 0) and no pool is implemented
(αq/αr = 1), this term must be taken into account. In this case εr(j) depends

on the variance of the outputs, i.e.
∑N
k=1 λkpj,k(1 − pj,k), meaning that it

would easier for the attacker to estimate probabilities pj,k of receivers that
get messages from senders whose behavior has low variance (i.e., senders
that always choose the same receiver, pj,k = 1, or users that never send to
a receiver, pj,k = 0). Adding delay or introducing dummy traffic increases
the variance of the output, thus reducing the dependency of the error on the
sending profiles.

The fact that we can differentiate the contribution of i and j in (6) also allows
for a graphic interpretation of the adversary’s estimation error. Figure 2a repre-
sents the values of MSEj,i as a function of i and j, in a scenario without dummies
where for simplicity we have assumed that the sending rates are distributed in
ascending order according to the senders’ index i, and the receiving rates are
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Fig. 2: (a) MSEj,i as a function of i and j in a scenario where λi are sorted
in ascending order and λ′j in descending order. (b) Comparison of the average
MSEj,i along j and i with and without dummies. (N = 100, M = 100, ρ = 10 000,
α = 0.5,

∑
λk = 500. In (b), δSEND = δMIX = 250).

distributed in descending order according to the receivers’ index j. Fig. 2b shows
the average MSEj,i over j and i, offering a comparison with a system where the
distribution of the dummies is uniform in both the input and output flows: εs(i)
determines the evolution of MSEj,i with i (top) and εr(j) the evolution with j
(bottom). This means that by distributing dummies among sender-based and
mix-based dummies, which in turn modify the value of εs(i) and εr(j), we can
shape the MSEj,i. We use this idea in the next section to design dummy strategies
that satisfy different privacy criteria.

5 Designing Dummy Traffic Strategies

In this section, we study how to distribute dummy traffic in order to guarantee
different privacy criteria. In other words, we aim at finding the values of the
parameters δi for i ∈ {1, · · · , N} and pj,MIX for j ∈ {1, · · · ,M} that maximize a
certain cost function representing some privacy objective. We consider that the
mix performs this optimization and informs each user i of the amount of dummies
δi she must send on average. The implementation of the return channel is left
out of the scope of this paper. We assume that the total number of dummies δTOT
that can be sent on average per round is constrained. We denote the average
number of sender-based dummies on each round as δSEND

.
=
∑N
i=1 δi, and the

average number of mix-based dummies as δMIX. We put no restriction on the
distribution of dummies among senders and mix other than δSEND + δMIX ≤ δTOT.
For notational simplicity, in the remainder of the section we omit the constraints
0 ≤ pj,MIX ≤ 1,

∑M
j=1 pj,MIX, δi ≥ 0 and

∑N
i=1 δi = δSEND in the equations.

In order to keep the optimization problems tractable, we assume that the
contribution of a single user to the total input traffic is negligible (i.e., λi+ δi �
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k=1(λk + δk)) and that users do not focus their traffic in a specific receiver

(i.e., pj,i � 1). In this case, defining the receiver rate of j as λ′j
.
=
∑N
k=1 λkpj,k,

we can approximate (6) as:

M̃SEj,i =
1

ρ
· 1

αq
· 1

λi
·
(

1 +
δi
λi

)
·
(
λ′j + δMIXpj,MIX

)
=

1

ρ
· 1

αq
· ε̃s(i) · ε̃r(j) (10)

5.1 Increasing the protection of every sender-receiver relation by
the largest factor β given a budget of dummies δTOT

In this section we design a dummy strategy that, given a budget of dummies
δTOT, increases MSEj,i of each transition probability pj,i by a factor β ≥ 1 as large
as possible with respect to the MSE when there are no dummies, denoted by
MSE0j,i. Departing from (10) we can formalize this problem as:

maximize
δ1,··· ,δN ,qMIX

M̃SEj,i, ∀i, j

subject to M̃SEj,i = β · M̃SE
0

j,i, ∀i, j
δSEND + δMIX = δTOT

(11)

Since the effects of the sender-based and mix-based dummies can be decoupled,
we can split the optimization into three subproblems:

1. Find the distribution of δi that increases ε̃s(i) by a factor βSEND for all i.

2. Find the distribution of pj,MIX that increases ε̃r(j) by a factor βMIX for all j.

3. Find the distribution of δTOT between δSEND and δMIX that maximizes the overall
increase β = βSEND · βMIX.

Optimal distribution of sender-based dummies We want to find the dis-
tribution of δi among senders that increases ε̃s(i) by a factor βSEND compared to

the dummy-free case. Since ε̃s(i) = 1/λi

(
1 + δi

λi

)
, sending δi dummies increases

the MSE in a factor βSEND = 1 + δi/λi. We can now obtain the sender based

dummy distribution, ensuring the that
∑N
i=1 δi = δSEND, as follows:

βSEND = 1 +
δSEND∑N
k=1 λk

=⇒ δi =
λi∑N
k=1 λk

· δSEND, ∀i (12)

This confirms the intuition given in Sect. 4, that the number of dummies a
user should send to achieve a certain level of protection is proportional to her
sending rate of real messages.

Optimal distribution of mix-based dummies Similarly, we want to find
the distribution of pj,MIX among receivers that increases ε̃r(j) by a factor βMIX
compared to the dummy-free case. Since ε̃r(j) = λ′j + δMIXpj,MIX, assigning send-
ing dummies with probability pj,MIX to receiver j increases the MSE by a factor
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βMIX = 1 + δMIXpj,MIX/λ
′
j . We can now obtain the sender-based dummy distribu-

tion, ensuring that
∑M
j=1 pj,MIX = 1, as follows:

βMIX = 1 +
δMIX∑M
m=1 λ

′
m

=⇒ pj,MIX =
λ′j∑M

m=1 λ
′
m

, ∀j (13)

As said in Sect. 4, the protection that receivers enjoy is proportional to their re-
ceiving rate. Therefore, to increase all MSEj,is by the same factor, more mix-based
dummies have to be given to those receivers that receive more real messages.

Optimal distribution of the overall amount of dummies Using the dis-
tributions obtained, and since

∑N
k=1 λk =

∑M
m=1 λ

′
m, we can write M̃SEj,i as

M̃SEj,i = M̃SE
0

j,i · βSEND · βMIX = M̃SE
0

j,i

(
1 +

δSEND∑N
k=1 λk

)(
1 +

δMIX∑N
k=1 λk

)
(14)

The distribution of the total amount of dummies that maximizes the increase in
M̃SEj,i is therefore δSEND = δMIX = δTOT/2. This result is particularly interesting:
if we are to increase the relative protection of each user equally, the protection
we get from sender-based and mix-based dummies is the same regardless of the
system parameters. That is, assigning all our available dummies to the senders
or to the mix is equivalent in terms of MSE, and distributing the dummies evenly
between the input and output flow is optimal, being the maximum achievable

gain β ≈
(

1 + δTOT
2
∑

k λk

)2
.

5.2 Increasing the minimum protection to every sender-receiver
relation given a budget of dummies δTOT

Our second design strategy consists in ensuring that, given a budget of dum-
mies δTOT, the distribution maximizes the minimum level of protection for all
relationships in the system. This implies that dummies are assigned to senders i
and receivers j in relationships whose estimation error MSEj,i is low, in order to
increase the minimum MSEj,i in the system. From a graphical point of view, we
can see this as a two-dimensional waterfilling problem: we need to increase the
lower MSEj,i in Fig. 2a up to a minimum, which can be larger as more dummies
δTOT are available. More formally, we want to solve:

maximize
δ1,··· ,δN ,qMIX

min
i,j

M̃SEj,i

subject to δSEND + δMIX = δTOT
(15)

As in the previous problem, we can separate the problem in three steps:

1. Find the distribution of δi that maximizes min
i
ε̃s(i).

2. Find the distribution of pj,MIX that maximizes min
j
ε̃r(j).

3. Find the distribution of δTOT among δSEND and δMIX that maximizes the mini-
mum MSEj,i in the system.
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Optimal distribution for sender-based dummies We aim at finding the

distribution of {δi} that increases the minimum value of ε̃s(i) = 1
λi

(
1 + δi

λi

)
over i, making it as large as possible given the budget of dummies. Formally,

maximize
δ1,··· ,δN

min
i
ε̃s(i)

subject to

N∑
i=1

δi = δSEND
(16)

Let A be the set containing the indices of those senders to whom we assign
dummies, i.e., A .

= {i : δi > 0}. Let ε̃s,MIN be the minimum value of ε̃s(i) we
achieve with this strategy. Then, the following statements are true:

– We do not assign sender-based dummies to those users k whose ε̃s(k) ≥
ε̃s,MIN without dummies; i.e., we only use sender-based dummies to help users
achieve that minimum.

– There is no gain in assigning dummies to a user k if by doing so we are
increasing ε̃s(k) above any other ε̃s(i); every user k ∈ A fullfills ε̃s(k) = ε̃s,MIN.

Given ε̃s(k) = ε̃s,MIN, and to ensure
∑N
k=1 δk =

∑
k∈A δk = δSEND we can get

an expression for ε̃s,MIN:

ε̃s,MIN =
1

λk

(
1 +

δk
λk

)
=⇒ ε̃s,MIN =

δSEND +
∑
k∈A λk∑

k∈A λ
2
k

(17)

In order to compute A, we assume w.l.o.g. that the indices are given to users
such that their sending frequencies are sorted in descending order, λ1 ≥ · · · ≥ λN
and we let Ai

.
= {1, · · · , i}. Then, A = An where n is the minimum value that

meets3

1

λn
≤
δSEND +

∑
k∈An

λk∑
k∈An

λ2k
≤ 1

λn+1
(18)

Finally, we assign

δi =

{
λi (λiε̃s,MIN − 1) , if i ∈ An
0, otherwise.

(19)

Optimal distribution for mix-based dummies Similarly, we aim at finding
the distribution of pj,MIX among receivers that increases the minimum value of
ε̃r(j), making it as large as possible given the budget of dummies. Using ε̃r(j) =
λ′j + δMIXpj,MIX, the problem can be formulated as:

maximize
p1,MIX,··· ,pM,MIX

min
j
ε̃r(j)

subject to

M∑
j=1

pj,MIX = 1
(20)

3 If the condition is not met because all 1/λn ≤ ε̃s,MIN(An), then we can assume that
n = N , i.e., all users will send dummies.
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We define the set B as the send of receivers that get mix-based dummies,
B .

= {j : pj,MIX > 0} and the minimum value of our optimization function we
achieve with this strategy as ε̃r,MIN. Then, following the procedure described
above, we get

ε̃r,MIN =
δMIX +

∑
j∈B λ

′
j

|B|
(21)

where |B| denotes the number of elements of B. If the receiver rates are sorted
in ascending order, λ′1 ≤ λ′2 ≤ · · · ≤ λ′M and Bj

.
= {1, 2, · · · , j}, then the set of

receivers that receive dummy messages is B = Bn where the value of n is the
smallest that meets

λ′n ≤
δMIX +

∑
j∈Bn

λ′j

|Bn|
≤ λ′n+1 (22)

Finally, we assign

pj,MIX =


1

δMIX

(
ε̃r,MIN − λ′j

)
, if j ∈ Bn

0, otherwise.
(23)

Optimal distribution of the overall amount of dummies In this case we
cannot get a closed-form expression for the optimal distribution of δTOT among
δSEND and δMIX, since it depends on the sizes of the sets A and B. The minimum
M̃SEj,i we achieve is for relationships where both sender and receiver are allocated
dummies. Plugging the distributions (19) and (23) into (10), we obtain

min
j,i

M̃SE =
1

ρ
· 1

αq
·
δSEND +

∑
k∈A λk∑

k∈A λ
2
k

·
δMIX +

∑
m∈B λ

′
m

|B|
(24)

Optimal values for δSEND and δMIX can be computed by performing an ex-
haustive search along δSEND + δMIX = δTOT, computing each time the sets A and
B as explained above. It is interesting to note that, if the number of dummies
available is large enough, i.e., δTOT → ∞, every sender and receiver is assigned
dummies. In this case, since

∑N
k=1 λk =

∑M
m=1 λ

′
m, the optimal strategy would

be to distribute the total amount of dummies evenly between the input and the
output traffics, i.e., δSEND = δMIX = δTOT/2.

6 Evaluation

In this section we evaluate the performance of the dummy traffic design strategies
designed in Sect. 5, and validate them against the theoretical bound for the
adversary’s error in (6) through a simulator written in the Matlab language.4

The scope of this analysis is focused on supporting our theoretical findings rather
than comparing our estimator with existing attacks.

4 The code will be available upon request.
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Experimental Setup. We simulate a system with N = 100 senders and M =
100 receivers. The sending frequencies of the users are sorted in ascending order,
in such a way that λi is proportional to i, and the average total number of real
messages sent by all users is

∑
λi = 500. The sending profiles qi are set such

that user i sends messages to herself and all other users k < i with the same
probability, i.e., pj,i = 1/i if j ≤ i and pj,i = 0. This ensures that receiving
rates λ′j are sorted in descending order. The probability that a message is fired
after each round is set to α = 0.5, and the number of rounds observed by the
attacker is ρ = 10 000. The theoretical MSEj,i for this scenario without dummies
is shown in Fig. 2a. Though not realistic, this experiment is sufficient to illustrate
the operation of the strategies in Sect. 5. The amount of dummies that users
and mix send and their distribution change between experiments. We run four
experiments, two for each dummy strategy in Sect. 5. We repeat each experiment
200 times and plot the average results.

6.1 Increasing the protection of every sender-receiver relation by
the largest factor β given a budget of dummies δTOT

First, we study the influence of the distribution of dummies among senders and
mix in the factor β that can be achieved with this strategy, when on average
δTOT = 500 dummies per round are available. Figure 3a shows the evolution of
β for different distributions of dummy messages between senders (δSEND) and
mix (δMIX). We see that the maximum increase is achieved when dummies are
divided equally between the senders and the mix, as predicted in Sect. 5.1. We
note that the maximum β in the figure is slightly higher than β = 2.25 that
would be obtained using the approximation (10) used to design the dummy
traffic strategy, meaning that the adversary estimation is worse than predicted
by the theory.

For the particular case where δSEND = δMIX = δTOT/2, we plot in Fig. 3b the
average MSEj,i over i (top) and j (bottom) with and without dummies (note
the vertical axis logarithmic scale). We see that indeed all MSEj,i increase by a
constant factor, β = 2.261. The figure also shows that (6) accurately models the
profiling error.

6.2 Maximizing the minimum protection to every sender-receiver
relation given a budget of dummies δTOT

First, we study the influence of the distribution of dummies among senders and
mix on the maximum minimum MSEj,i that can be achieved with this strategy,
when on average δTOT = 500 dummies per round are available. Fig. 4a shows
the evolution of the average minimum MSEj,i depending on the distribution of
dummies between the senders and the mix. In the scenario considered in our
experiment, the maximum minimum MSEj,i achievable is obtained when approx-
imately 40% of the dummies are assigned to the senders and the remaining 60%
to the mix. This is because, in this strategy, the rate of sender-based dummies
depends quadratically on the real sending rate (c.f. (19)), while the number of
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Fig. 3: (a) Evolution of β with the fraction of dummies distributed among senders
and mix. (b) Average MSEj,i evolution over i (top) and j (bottom) when dummies
are distributed uniformly among senders and mix. (N = 100, M = 100, ρ =
10 000, α = 0.5, δTOT = 500)

mix-based dummies depends linearly on the real receiving rate (c.f. (23)). Hence,
mix-based dummies can be distributed more efficiently and it is preferable to as-
sign the mix a larger budget than to the senders. We note that this result depends
strongly on the users behavior. In fact, if the real traffic is distributed uniformly
among receivers but few senders generate the majority of the traffic, allocating
a large fraction of dummy traffic to the senders becomes the best option.

This is better shown in Fig. 4b. The top plot shows the MSEj,i along i
when there are no dummies, and when only sender-based dummies are avai-
lable (δSEND = δTOT; δMIX = 0). As expected, more dummies increase the minimum
MSEj,i, but, since the average number of sender-based dummies depends quadra-
tically on the real sending rate, few senders with high rates exhaust the budget,
which constrains the maximum minimum error achievable in the system. On
the other hand, allocating all the dummies to the mix (Fig. 4b, bottom) allows
to spread the distribution of dummies among more relationships, which in turn
provides better overall protection than the previous case.

7 Discussion

In this section we discuss how to adapt the derivation of the least squares esti-
mator in Sect. 3 to scenarios where pool and users’ behavior are outside of the
model considered throughout the document.

Non-static sending profiles. In practice users’ behavior is expected to change
over time. Our estimator can be adapted to account for dynamic profiles by im-
plementing the Recursive Least Squares algorithm [17]. This algorithm includes
a forgetting factor, which determines how fast the algorithm “forgets” past obser-
vations. Tuning this parameter, one can choose between getting a high-variance
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Fig. 4: (a) Evolution of the minimum MSEj,i with the fraction of dummies dis-
tributed among senders and mix. (b) Average MSEj,i evolution over i when only
sender-based dummies are available (top), and j when only mix-based dummies
are available (bottom). (N = 100, M = 100, ρ = 10 000, α = 0.5, δTOT = 100, 500)

estimator of the recent users’ sending profile or obtaining a more stable long-term
sending profile.

Non-independent users with memory. Although our model considers dis-
joint sets of senders and receivers, it can easily accommodate the case where users
both send and receive messages. In this scenario, users’ sending behavior may be
dependent on messages sent or received in the past (e.g., email replies). Given a
model of these interactions between users one can compute the expected value of
the output observations given the inputs, and then proceed with the derivation
of the estimator as in Sect. 3.

Non-static dummy strategies. If the probability of sending a real message
(Pλi) changes over time, a per-round probability P rλi

could be defined. This
dynamic probability can be used in the derivations in the Appendix (c.f. (30))
to account for the effect of this variation on the attacker’s estimation of the
hidden variables Xr

s,i. When the average mix-based dummies (δMIX) or the mix
profile (qMIX) vary over time, an aware attacker can include this behavior in
(26), modifying the expected value of the outputs. Designing adaptive dummy
strategies is left as subject for future work.

Complex batching strategies. Our anonymous channel model does not cover
pool mixes whose batching strategy depends on the number of messages in the
pool, such as that used by Mixmaster [12]. However, extending our model to this
scenario is straightforward: the adversary can estimate the average number of
messages in the pool by discarding a percentage of the incoming messages that
are expected to be dummy, and therefore she can get an estimate of the average
number of messages from each user that leave in each round, Xr

s,i. The estimator
would still be formulated as (4).
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8 Conclusions

In this paper, we have proposed a methodology to analyze mix-based anonymous
communication systems with dummy traffic. Following a least squares approach,
we derive an estimator of the probability that a user sends messages to a re-
ceiver. This estimator allows us to characterize the error of the adversary when
recovering user profiles, or individual probabilities, with respect to the system
parameters. Furthermore, it can be used to design dummy strategies that satisfy
a wide range of privacy criteria.

As an example, we have studied the performance of the least squares es-
timator on a timed binomial pool mix, which enables us to derive qualitative
conclusions about the effects of static dummy traffic on the adversary’s error.
We have used this estimator to design dummy strategies that, given a budget of
dummies, achieve two privacy targets: increase the protection of each sender and
receiver relationship equally, and maximize the minimum protection provided to
any relationship between users. The empirical evaluation of these strategies vali-
dates our theoretical results and confirms the qualitative intuitions drawn in the
performance analysis.

Our methodology improves our understanding on the effect of dummy traffic
on privacy in anonymous communication systems. It can be seen as a step for-
ward towards the development of a systematic method to design dummy traffic,
especially important to evaluate and improve privacy protection in deployed
mix-based systems such as [11, 12].

Appendix A: Derivation of the expected value of the
output messages given the inputs.

We aim here at deriving an expression for the expected value of the random
vector of the output observations Y(p) given the input observations U, i.e.,
E {Y(p)|U}. For simplificy, we assume that by the time the adversary starts
observing the system the pool is empty. In practice, the initial messages in the
pool would appear as noise in the initial output observations and its effect can
be disregarded when the number of observations in large, as explained in [13].
For notational simplicity, we also omit writing the conditioning on U explicitly.

In order to relate in a statistical way the input and output flows of the mix,
we follow the abstract model for the timed pool mix in Fig. 1. The different
variables in this model can be related backwards in the following way:

– The number of output messages for receiver j in round r is Y rj
.
= Y rλ,j +Y rδ,j .

We can model the components refering to the real and dummy messages as:
• Given the messages exiting the pool block xrs,i for every sender i, the

number of real messages leaving the mix Y rλ,j for each receiver j is the

sum of N multinomials, where qi
.
= [p1,i, · · · , pM,i]

T :

{
Y rλ,1, · · · , Y rλ,M

∣∣xrs,1, · · · , xrs,N} ∼ N∑
i=1

Multi
(
xrs,i,qi

)
(25)
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• Likewise, given the number of mix-based dummies generated in round r,
xrMIX, and qMIX

.
= [p1,MIX, · · · , pM,MIX]

T ; Y rδ,j can be modeled as:{
Y rδ,1, · · · , Y rδ,M

∣∣xrMIX} ∼ Multi (xrMIX,qMIX) (26)

Later, we use: E
{
Y rδ,j

}
= E {Xr

MIX} · pj,MIX = δMIX · pj,MIX.
– The messages leaving the pool from user i in round r, Xr

s,i, may come from
any of the real messages sent by that user in the current and previous rounds.
We can write Xr

s,i =
∑r
k=1X

r,k
s,i , where Xr,k

s,i is the random variable modeling
the number of messages from user i that were sent in round k and leave the
mix in round r (r ≥ k). These random variables can be modeled, given the
number of real messages sent by i in round r, xrλ,i, as:{

Xk,k
s,i , X

k+1,k
s,i , · · · , Xk+l,k

s,i , · · ·
∣∣∣xkλ,i} ∼ Multi

(
xkλ,i, {Fk,k, Fk+1,k, · · · , Fk+l,k, · · · }

)
(27)

– Finally, given the total number of messages from user i that were sent in
round r, xri , the number of real messages sent in that round Xr

λ,i follows{
Xr
λ,i

∣∣xri} ∼ Bin (xri , Pλi
) (28)

We now compute E {Y(p)}. From (25) and (26), we get E {Yj(pj)|Us} =
Us·pj+δMIX1ρ·pj,MIX and thus E {Y(p)|Us} = (IM ⊗Us)·p+(IM ⊗ δMIX1ρ)·qMIX.
Using this last equality together with the law of total expectation, we can write

E {Y(p)} = E {E {Y(p)|Us}} = (IM ⊗ E {Us}) · p + (IM ⊗ δMIX1ρ) · qMIX (29)

For notational simplicity, let ŷδ
.
= E {Yδ} = (IM ⊗ δMIX1ρ) · qMIX be the

attacker’s estimation of the number of mix-based dummies sent each round.
Likewise, let Ûs

.
= E {Us} be the estimation the attacker makes of the non-

observable random matrix Us and Ĥs
.
= IM ⊗ E {Us}. In order to compute an

element of Ûs, i.e., x̂rs,i, we use the law of total expectation repeatedly

x̂rs,i
.
= E

{
Xr
s,i

∣∣U} =
∑r
k=1 E

{
Xr,k
s,i

∣∣∣Xi
k

}
=
∑r
k=1 E

{
E
{
Xr,k
s,i

∣∣∣Xk
λ,i

}∣∣∣Xi
k

}
=
∑r
k=1 E

{
Xk
λ,i

∣∣∣Xi
k

}
· Fr,k =

∑r
k=1 x

k
i PλiFr,k

(30)
For compactness, we define the ρ × ρ matrix B, which contains in its (r, k)-
th position the value Fr,k if r ≥ 0 and 0 otherwise; and the diagonal matrix
Pλ

.
= diag {Pλ1

, Pλ2
, · · · , PλN

}. Then, we can write

Ûs = B ·U ·Pλ (31)

Plugging (31) into (29), we get E {Y(p)} = (IM ⊗ Ûs) · p + ŷδ; with ŷδ =

(IM ⊗ δMIX1ρ) · qMIX and Ûs in (31), which concludes the proof.
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